Matakuliah Analisis Numerik bertujuan untuk mengkaji berbasis analisa-sintesa tentang penerapan paradigma numerik dalam sistem persamaan linier (SPL), sifat ill-conditioned dari SPL, dan beberapa metode iteratif dalam peningkatan akurasi solusi nemerik dari SPL. Pemahaman paradigma numerik juga diaplikasikan untuk menentukan solusi numerik dari PDB dengan langkah tunggal ( single step ) maupun multi-langkah. Pembahasan juga mendiskusikan tentang metode pictorial untuk menentukan solusi numerik dari persamaan diferensial parsial (PDP) dengan memfokuskan pada tiga tipe: eliptik, parabolik, dan hiperbolik. Pembuktian analitik dan ilustrasi simulatif berbasis Matlab didiskusikan untuk model penyelesaian dari suatu permasalahan yang didisain berbasis techno-echo-entrepreneur-maths . Pembelajaran dilakukan dengan menerapkan gabungan antara pendekatan problem-based learning , diskusi, dan konvesional pembelajaran langsung. Kegiatan pembelajaran juga dimaksudkan untuk peningkatan keterampilan melalui presentasi kelompok dengan topik-topik yang ditentukan. Pelaksanaan penilaian ditentukan dengan bobot proporsional dan dilakukan selama proses pembelajaran dengan keaktifan partisipasi interaktif, presentasi, tugas dan ujian tengah semester, serta ujian akhir semester.