Course Description
Provides a foundation for understanding linear algebra. Some of the study materials that will be discussed in this course include: systems of linear equations (SPL), matrices and their operations, vector spaces and subspaces, bases and dimensions, row/column spaces, inner product spaces, linear transformations, eigenvalues and eigenvectors. In the SPL material, we will discuss how to solve the SPL, both by Gauss elimination and Gauss-Jordan elimination. A more specific discussion of matrix operations will discuss the determinant and inverse of the nxn matrix. The inner product space that will be discussed is the inner product space of Euclid and others. Apart from that, norms, orthogonality and the Gramm-Scmidth process are also discussed. The eigenvalues that will be discussed are real eigenvalues. Learning is carried out by activating students through questions and answers, training students to argue using presentation media.
Program Objectives (PO)
- Mampu menggunakan Metode Eliminasi Gauss dan Gauss-Jordan dalam menyelesaikan SPL
- Mampu menggunakan sifat-sifat operasi matriks untuk menentukan Determinan matriks
- Mampu menggunakan sifat-sifat operasi matriks untuk menentukan Invers matriks
- Mampu mendemonstrasikan pengetahuan tentang Ruang Vektor
- Mampu mendemonstrasikan pengetahuan tentang Transformasi Linier
- Mampu mendemonstrasikan pengetahuan tentang nilai eigen dan vektor eigen
- Mampu mengambil keputusan berdasarkan data/informasi dalam menyelesaikan tugas terkait SPL yang menjadi tanggung jawab mahasiswa dan mengevaluasi pekerjaan yang telah dikerjakan