

Universitas Negeri Surabaya Faculty of Mathematics and Natural Sciences Undergraduate Mathematics Study Program

Document Code

SEMESTER LEARNING PLAN

Courses			CODE	Course Family	Credit Weight				SEMESTER	Compilation Date			
Differential Calculus			4420104051	Compulsory Study	/	T=4	P=0	ECTS=6.36	1 July 17, 202				
AUTHORIZA	ΓΙΟΝ		SP Developer	- Frogram Subjects	Cours	e Clu	ister C	oordinator	Study Program	n Coordinator			
									Prof. Dr. Raden Sulaiman, M.Si.				
Learning model	Project Based Learning												
Program	PLO study prog	gram	that is charged to the co	urse									
Outcomes	Program Object	tives	(PO)										
(PLO)	PO-1 Able to generalize concepts related to the real number system, real functions, limits and continuity, derivatives of a real function, transcendent functions and their derivatives, limits of indefinite forms, Taylor series and Maclaurin series												
	PO - 2	Able deriva Macla	to identify and explain simp atives of a real function, tran aurin series	le problems related ascendent functions	to the r and the	real r eir de	number rivative	system, real s, limits of inc	functions, limits lefinite forms, Ta	and continuity, ylor series and			
	PO - 3	Gene and c Taylo	eralize the ideas used to con continuity, derivatives of a re or series and Maclaurin serie	nplete tasks related eal function, transce s and be able to cor	to the c endent f mmunica	conce functi ate o	epts of ons ar rally or	the real numb d their deriva in writing	per system, real t atives, limits of ir	functions, limits idefinite forms,			
	PO - 4	Able limits forms	to formulate and solve fund and continuity, derivatives s, Taylor series and Maclauri	lamental mathemati of real functions, t in series	ical prot transcen	olems ndent	s relate functio	ed to the real ons and their	number system, derivatives, lim	real functions, its of indefinite			
	PO - 5 Able to use solution search methods in solving mathematical problems related to the real number functions, limits and continuity, derivatives of a real function, transcendent functions and their derivat indefinite forms, Taylor series and Maclaurin series								er system, real atives, limits of				
	PO - 6	Able deriva Macla	to implement solution seam atives of real functions, trans aurin series using the help of	ch methods related scendent functions f Geogebra, Maple o	l to rea and thei or mathe	l nun ir der emati	nber s ivative ca.	vstems, real s, limits of inc	functions, limits lefinite forms, Ta	and continuity, ylor series and			
	PO - 7	Able	to complete tasks within the	specified time									
	PLO-PO Matrix												
	PO Matrix at th	e end	P.0 PO-1 PO-2 PO-3 PO-4 PO-5 PO-6 PO-7	Sub-PO)									

1																	
		P.O	1	2 2	4	Б	6	7	0	Wee	10	11	12	12	14	15	16
		PO-1	-	2 3	4	5	0	'	0	9	10	11	12	13	14	13	10
		PO-2															
		PO-3															
		PO-4															
		PO-5															
		PO-6															
		PO-7															
					1 1									l			
Short Course Descript	tion tion tion tion tion tion tion tion	al number system, r neir derivatives, limit: mptotes function grap vates students (indep	real fur s of irr phs, op penden	nctions, regular f ntimizatio t study, (limits a orms, on prob discuss	and Taylo Iems sion a	contini or and and qu	uity, d Mac deterr estior	lerivat laurin nining nand a	tives seri the answ	of rea es, ap appro ver), bo	al fung oplying ach to oth offl	tions these a fund ine and	and th conce ction at donline	eir uses epts to a point e using t	s, trar the pi throu he Vir	iscende roblem igh hybr iesa LM
Referen	ces Main :																
	1. Thomas 2. Purcell,	Jr., G. B., Hass, J., H E.J., Varberg, D., and	Heil C., d Rigdo	& Weir, on, S.E. 2	M.D., e 2007 . (et.al. Calcı	2018. ılus 9t	Thon h Edit	nas, C ion . (alcul Ontar	us 14t io: Pe	h Editi arson,	on (Re Prenti	vised) ce Hall	. Bostor	I: Pea	rson
	Supporters:																
	1 Stewart	1 2020 Calculus: E	arly Tra	anscend	ental Ot	th Ed	ition F	Rosto	n: Cer	nane	lear	nina					
	2. Adams, 3. Abadi & 4. Moeson	R. A. 2017. Calculus: Wintarti, A. 2014 (in o, D. 1994. Kalkulus I	: A Cor press). I (Edisi	nplete C Kalkulu: Revisi).	ourse, s, Buku Suraba	9th E I 1. S aya: I	dition Juraba Univer	. Onta ya sity P	ress S	earso	on Daya	, in 19					
Support lecturer	ing Dr. Abadi, M.Sc. Dr. Dian Savitri, Yuliani Puji Astu Rudianto Artiono Dwi Nur Yuniant Budi Priyo Praw Dayat Hidayat, S Riska Wahyu Ro	S.Si., M.Si. ti, S.Si., M.Si. , S.Pd., M.Si. , S.Si., M.Sc. to, S.Pd., M.Si. S.Pd., M.Pd., M.Si. madhonia, S.Si., M.S	Sc.														
Week-	Final abilities of each learning	Ev	aluation			Help Learning, Learning methods, Student Assignments, [Estimated time]				Lea mate	rning erials	Ass	sessme				
	(Sub-PO)	Indicator	С	riteria &	Form		Off off	line (line)		On	line (online)	L Ketel	ences		
(1)	(2)	(3)		(4)				(5)			(6)			(7)		(8)
1	 Understand the real number system and inequalities Understand the definition of interval Obtaining solutions to inequalities on the set of real numbers 	1.Explain the properties of Real Numbers 2.Understand the definition of intervals in the real number system 3.Solve inequalities and get solutions on tho set of	Crite Atta Form Test	ria: ched of Asso	essmei	nt :	Hybri learni a collat appro and indep work. 200	d ing wi borativ bach bende	th ve nt					Materia numbe system real fur Refere Thoma GB, Ha Heil C. Weir, N Weir, N tet.al. 2 Thoma Calculu Edition (Revise Boston	al: Real r is and nctions nces: s Jr., ass, J., , & 1D, 018. s, is 14th ed).		2%

2	 Understanding Real Functions, Domains and Function Ranges Sketching Function graphs manually or with the help of software Understand composition and inverse functions Complete assignments according to the specified time Presenting the results of the assignment 	 Determine various types of functions including transcendent functions Determining the Function Domain and Range Drawing Function Graphs Find the condition that two functions are mutually inverse Transforming functions through function composition 	Criteria: Attached Form of Assessment : Participatory Activities, Tests	Hybrid learning with a collaborative approach and independent work. 200	Material: Domain and Range of Functions, Graphs of Functions, Composition of functions, Inverse of a Function, Transformation of functions References: <i>Thomas Jr.</i> , <i>GB</i> , Hass, J., <i>Heil C.</i> , & <i>Weir, MD</i> , <i>et.al. 2018.</i> <i>Thomas,</i> <i>Calculus 14th</i> <i>Edition</i> (<i>Revised</i>). <i>Boston:</i> <i>Pearson</i>	2%
3	 Understanding Real Functions, Domains and Function Ranges Sketching Function graphs manually or with the help of software Understand composition and inverse functions Complete assignments according to the specified time Presenting the results of the assignment 	 Determine various types of functions including transcendent functions Determining the Function Domain and Range Drawing Function Graphs Find the condition that two functions are mutually inverse Transforming functions through function composition 	Criteria: Attached Form of Assessment : Participatory Activities, Tests	Hybrid learning with a collaborative approach and independent work. 200	Material: Domain and Range of Functions, Graphs of Functions, Composition of functions, Inverse of a Function, Transformation of functions References: Thomas Jr., GB, Hass, J, Heil C., & Weir, MD, et.al. 2018. Thomas, Calculus 14th Edition (Revised). Boston: Pearson	2%
4	 Determining the limit of the function at a point Determining whether a function is continuous or discontinuous at a point c. Defines a new function for a discontinuous function that can be eliminated 	 Determining the limit of the function at a point Determining whether a function is continuous or discontinuous at a point c Defines a new function for a discontinuous function that can be eliminated 	Criteria: Attached	Hybrid learning with a collaborative approach and independent work. 200	Material: Function Limits around point c. Continuity of function at point c. References: Thomas Jr., GB, Hass, J., Heil C., & Weir, MD, et.al. 2018. Thomas, Calculus 14th Edition (Revised). Boston: Pearson	2%
5	 Determining the limit of the function at a point Determining whether a function is continuous or discontinuous at a point c. Defines a new function for a discontinuous function that can be eliminated 	 Determining the limit of the function at a point Determining whether a function is continuous or discontinuous at a point c Defines a new function for a discontinuous function that can be eliminated 	Criteria: Attached Form of Assessment : Participatory Activities, Tests	Hybrid learning with a collaborative approach and independent work. 200	Material: Function Limits around point c. Continuity of function at point c. References: Thomas Jr., GB, Hass, J., Heil C., & Weir, MD, et.al. 2018. Thomas, Calculus 14th Edition (Revised). Boston: Pearson	2%

6	 Understand function derivatives Determine the derivatives of the given functions Use the chain rule to solve derivatives of functions Determine the tangent line equation and the normal equation Obtaining derivatives of functions using software assistance Complete tasks within the specified time 	 Understand function derivatives Solving derivative problems of various functions: including implicit functions and transcendent functions Use the chain rule to solve derivatives of functions Determine the tangent line equation and the normal equation Obtaining derivatives with the help of technology 	Criteria: Attached Form of Assessment : Project Results Assessment / Product Assessment, Test	Hybrid learning with a collaborative approach and independent work. 200	Material: Derivatives of real functions, transcendent functions, and implicit functions Chain rule, tangent line equations and normal equations References: <i>Thomas Jr.</i> , <i>GB</i> , Hass, J., <i>Heil C.</i> , & <i>Weir, MD</i> , <i>et.al. 2018.</i> <i>Thomas</i> , <i>Calculus 14th</i> <i>Edition</i> <i>(Revised).</i> <i>Boston:</i> <i>Pearson</i>	2%
7	 Understand function derivatives Determine the derivatives of the given functions Use the chain rule to solve derivatives of functions Determine the tangent line equation and the normal equation Obtaining derivatives of functions using software assistance Complete tasks within the specified time 	 Understand function derivatives Solving derivative problems of various functions: including implicit functions and transcendent functions Use the chain rule to solve derivatives of functions Determine the tangent line equation and the normal equation Obtaining derivatives with the help of technology 	Criteria: Attached Form of Assessment : Project Results Assessment / Product Assessment, Test	Hybrid learning with a collaborative approach and independent work. 200	Material: Derivatives of real functions, transcendent functions, and implicit functions Chain rule, tangent line equations and normal equations References: <i>Thomas Jr.</i> , <i>GB, Hass, J.</i> , <i>Heil C., &</i> <i>Weir, MD</i> , <i>et.al. 2018.</i> <i>Thomas,</i> <i>Calculus 14th</i> <i>Edition</i> <i>(Revised).</i> <i>Boston:</i> <i>Pearson</i>	2%
8	UTS	All indicators before UTS	Criteria: Attached Form of Assessment : Test	UTS 100	Material: Derivatives of real functions, transcendent functions, and implicit functions Chain rule, tangent line equations and normal equations References: <i>Thomas Jr.,</i> <i>GB, Hass, J.,</i> <i>Heil C., &</i> <i>Weir, MD,</i> <i>et.al. 2018.</i> <i>Thomas,</i> <i>Calculus 14th</i> <i>Edition</i> <i>(Revised).</i> <i>Boston:</i> <i>Pearson</i>	20%

9	 Determining the critical point of the function Determine extreme points and inflection points Determining the concavity of a function through the first derivative test and the second derivative test Sketching graphs of polynomial functions (CLO-3) with the help of software Understand the related rates Applying derivatives to solve simple problems Complete tasks according to the specified time Presenting the results of the assignment 	 Determining the critical point of the function Determine extreme points and turning points Determining the concavity of a function through first and second derivative tests Sketch graphs of polynomial and rational functions Understand the associated rates Modeling and solving max/min problems 	Criteria: Attached Form of Assessment : Practice / Performance	Hybrid learning with a collaborative approach and independent work. 200	Material: Critical points, extreme points, inflection points, concavity of functions, graphs of polynomial functions, related rates, simple mathematical modeling References: <i>Thomas Jr.</i> , <i>GB</i> , Hass, J., <i>Heil C.</i> , & <i>Weir, MD</i> , et .al. 2018. <i>Thomas</i> , <i>Calculus 14th</i> <i>Edition</i> <i>(Revised).</i> <i>Boston:</i> <i>Pearson</i>	5%
10	 Determining the critical point of the function Determine extreme points and inflection points Determining the concavity of a function through the first derivative test and the second derivative test Sketching graphs of polynomial functions (CLO-3) with the help of software Understand the related rates Applying derivatives to solve simple problems Complete tasks according to the specified time Presenting the results of the assignment 	 Determining the critical point of the function Determine extreme points and turning points Determining the concavity of a function through first and second derivative tests Sketch graphs of polynomial and rational functions Understand the associated rates Modeling and solving max/min problems 	Criteria: Attached Forms of Assessment Participatory Activities, Project Results Assessment / Product Assessment	Hybrid learning with a collaborative approach and independent work. 200	Material: Critical points, extreme points, inflection points, concavity of functions, graphs of polynomial functions, related rates, simple mathematical modeling References: <i>Thomas Jr.</i> , <i>GB, Hass, J.</i> , <i>Heil C., &</i> <i>Weir, MD,</i> et .al. 2018. <i>Thomas,</i> <i>Calculus 14th</i> <i>Edition</i> <i>(Revised).</i> <i>Boston:</i> <i>Pearson</i>	5%

11	 Determining the critical point of the function Determine extreme points and inflection points Determining the concavity of a function through the first derivative test and the second derivative test Sketching graphs of polynomial functions (CLO-3) with the helpp of software Understand the related rates Applying derivatives to solve simple problems Complete tasks according to the specified time Presenting the results of the assignment 	 Determining the critical point of the function Determine extreme points and turning points Determining the concavity of a function through first and second derivative tests Sketch graphs of polynomial and rational functions Understand the associated rates Modeling and solving max/min problems 	Criteria: Attached Form of Assessment : Participatory Activities	Hybrid learning with a collaborative approach and independent work. 200	Material: Critical points, extreme points, inflection points, concavity of functions, graphs of polynomial functions, related rates, simple mathematical modeling References: <i>Thomas Jr.</i> , <i>GB, Hass, J.</i> , <i>Heil C., &</i> <i>Weir, MD, et</i> <i>.al. 2018.</i> <i>Thomas,</i> <i>Calculus 14th</i> <i>Edition</i> <i>(Revised).</i> <i>Boston:</i> <i>Pearson</i>	6%
12	 Determining the limit of indefinite form Solving limit problems of indefinite form Understanding l'Hôpital's theorem Solving limit problems of indefinite form using l'Hôpital's theorem Complete tasks on time 	 Solving limits of the form 0/0 and ∞/∞ Solving limits of the form 0·∞ Solving limits of the form 0.0, 0^∞, and ∞^0 Solving limit problems of indefinite form using I'Hôpital's theorem 	Criteria: Attached Form of Assessment : Participatory Activities	Hybrid learning with a collaborative approach and independent work. 200	Material: Limits of indefinite forms References: Thomas Jr., GB, Hass, J., Heil C., & Weir, MD, et.al. 2018. Thomas, Calculus 14th Edition (Revised). Boston: Pearson	6%
13	 Determining the limit of indefinite form Solving limit problems of indefinite form Understanding l'Hôpital's theorem Solving limit problems of indefinite form using l'Hôpital's theorem Complete tasks on time 	 Solving limits of the form 0/0 and ∞/∞ Solving limits of the form 0·∞ Solving limits of the form ∞·∞ Solving limits of the form 0·0, 0^∞, and ∞^0 Solving limit problems of indefinite form using l'Hôpital's theorem 	Criteria: Attached Form of Assessment : Participatory Activities, Practice/Performance	Hybrid learning with a collaborative approach and independent work. 200	Material: Limits of indefinite forms References: Thomas Jr., <i>GB</i> , Hass, J., <i>Heil C., &</i> Weir, MD, et.al. 2018. Thomas, Calculus 14th Edition (Revised). Boston: Pearson	6%

14	 Understand Taylor series and/or Maclaurin series Changing the function into a Taylor series and/or Maclaurin series form Using the Taylor series and/or Maclaurin series in a value approach problem 	 Converting the function to Taylor and/or Maclaurin series form Using the Taylor and/or Maclaurin series in an approximate value problem 	Criteria: Attached Form of Assessment : Participatory Activities, Practice/Performance	Hybrid learning with a collaborative approach and independent work. 200	Material: Taylor Series and Maclaurin Series References: Thomas Jr., GB, Hass, J., Heil C., & Weir, MD, et.al. 2018. Thomas, Calculus 14th Edition (Revised). Boston: Pearson	6%
15	 Understand Taylor series and/or Maclaurin series Changing the function into a Taylor series and/or Maclaurin series form Using the Taylor series and/or Maclaurin series in a value approach problem 	 Converting the function to Taylor and/or Maclaurin series form Using the Taylor and/or Maclaurin series in an approximate value problem 	Criteria: Attached Form of Assessment : Participatory Activities, Practice/Performance	Hybrid learning with a collaborative approach and independent work. 200	Material: Taylor Series and Maclaurin Series References: Thomas Jr., GB, Hass, J., Heil C., & Weir, MD, et.al. 2018. Thomas, Calculus 14th Edition (Revised). Boston: Pearson	2%
16	UAS	All indicators before UAS	Criteria: Attached Form of Assessment : Test	UAS 100	Material: All material before UAS References: Thomas Jr., GB, Hass, J., Heil C., & Weir, MD, et.al. 2018. Thomas, Calculus 14th Edition (Revised). Boston: Pearson	30%

Evaluation Percentage Recap: Project Based Learning

No	Evaluation	Percentage
1.	Participatory Activities	24.5%
2.	Project Results Assessment / Product Assessment	4.5%
3.	Practice / Performance	12%
4.	Test	57%
		98%

Notes

- Learning Outcomes of Study Program Graduates (PLO Study Program) are the abilities possessed by each Study
 Program graduate which are the internalization of attitudes, mastery of knowledge and skills according to the level of their
 study program obtained through the learning process.
- 2. The PLO imposed on courses are several learning outcomes of study program graduates (CPL-Study Program) which are used for the formation/development of a course consisting of aspects of attitude, general skills, special skills and knowledge.
- Program Objectives (PO) are abilities that are specifically described from the PLO assigned to a course, and are specific to the study material or learning materials for that course.
- 4. **Subject Sub-PO (Sub-PO)** is a capability that is specifically described from the PO that can be measured or observed and is the final ability that is planned at each learning stage, and is specific to the learning material of the course.
- 5. Indicators for assessing ability in the process and student learning outcomes are specific and measurable statements that identify the ability or performance of student learning outcomes accompanied by evidence.
- 6. Assessment Criteria are benchmarks used as a measure or measure of learning achievement in assessments based on predetermined indicators. Assessment criteria are guidelines for assessors so that assessments are consistent and unbiased. Criteria can be quantitative or qualitative.
- 7. Forms of assessment: test and non-test.
- 8. Forms of learning: Lecture, Response, Tutorial, Seminar or equivalent, Practicum, Studio Practice, Workshop Practice, Field Practice, Research, Community Service and/or other equivalent forms of learning.
- 9. Learning Methods: Small Group Discussion, Role-Play & Simulation, Discovery Learning, Self-Directed Learning, Cooperative Learning, Collaborative Learning, Contextual Learning, Project Based Learning, and other equivalent methods.

- 10. Learning materials are details or descriptions of study materials which can be presented in the form of several main points
- and sub-topics.
 11. The assessment weight is the percentage of assessment of each sub-PO achievement whose size is proportional to the level of difficulty of achieving that sub-PO, and the total is 100%.
 12. TM=Face to face, PT=Structured assignments, BM=Independent study.