

Universitas Negeri Surabaya Faculty of Mathematics and Natural Sciences Undergraduate Mathematics Study Program

Document Code

- - 40

SEMESTER LEARNING PLAN

Courses			CODE			Course Family				(Credit Weight				SEMESTER Compila		npilati	ion		
Data Structures and Algorithms			442010313	2			Com	pulso	ry Sti	ıdv	T=3 P=0 ECTS=4.77		7	4	1	Dat Jan	e uarv 2	2,		
	J				Program Su				Subje	cts						2024			_,	
AUTHORIZAT	TION		SP Develo	per						Cou	rse C	luste	er Co	ordinator	St	udy l	Progra	am Co	ordina	ator
			Riska Wahyu Romadhonia, M.Sc.										F	Prof Dr. Raden Sulaiman			n,			
	1								M.Si.											
Learning model	Project Based Learning																			
Program Learning	PLO study pro	gram t	hat is char	ged t	o the	cou	rse													
Outcomes (PLO)	Program Object	ctives ((PO)																	
(- <i>y</i>	Able to complete tasks in groups with full empathy as fellow citizens and religious communities by utilizing techno- ecopreneur.																			
	PO - 2 Able to analyze and solve mathematical problems based on understanding data structures and algorithms																			
	PO - 3	Able t progra	to implemen ams	t and	simu	late n	nathe	matic	al pro	oblem	is rela	ated	to da	ta structur	es and	d alg	orithm	s into	comp	uter
	PO - 4	Able t orally	to answer pi	oblen	ns giv	en, p	repar	e ans	wers	/repor	ts on	prob	lems	given in v	/riting	and	or cor	nmuni	cate th	nem
	PO - 5	Able t	o solve giver	n prob	lems	by util	lizing	comp	uter	orogra	ams									
	PO - 6	Able t algorit	to demonstr thms, and se	ate kı archir	nowlei ng alg	dge c orithm	of the	conc d theii	epts appl	of al icatio	ostrac ns	t dat	a str	uctures, lir	ked,	stack	k, que	ue, tre	e, sor	ting
	PLO-PO Matrix																			
			P.0																	
			PO-1																	
			PO-2																	
			PO-3																	
			PO-4																	
			PO-5	_																
			PO-6																	
	PO Matrix at th	e end	of each lea	rninc	ı star	1e (Si	uh-P	0)												
			or cuorrica		Jung	10 (01		0)												
			P.O									Wee	ek							
				1	2	3	4	5	6	7	8	9	10	11 3	.2	13	14	15	16	
		PC	D-1																	
		PC)-2																	
		PC)-3																	
		PC)-4																	
		PC)-5																	
		PC	D-6]
Short	Study the concer	ots of da	ata structure	sand	algori	thms	that c	an be	ann	lied to) com	nuter	prog	rams The	discus	sion	heain	s with	hasic	lata
Course Description	structures which searching and so individual and gro	include orting. N oup tasl	linked-list, s Next we disc k-based lear	tack, uss al ning, p	queue Igorith preser	e, and ims a nted ir	l tree. nd da n theo	Ther ita str ory an	uctur d pra	discus es tha ctice	and d	suita emor	algorit able fo	hms that up or solving ing the res	se the proble	se da ms ir com	ata str n every puter p	ucture /day li program	s, such fe thro ms.	n as ugh
References	Main :																			
			1																	

	1. Goodrich	1. Goodrich, M.T., Tamassia R., Goldwasser M.H. 2013. Data Structures and Algorithms in Phyton. USA: John Wiley&Sons								
	Supporters:									
	1. Baka, Be2. Bullinaria3. Lambert,4. Padmaja	njamin. 2017. Pythor I, J. 2019. Lecture No Kenneth A. 2019. Fu , B.2017. Lecture No	Data Structures and A tes for Data Structures indamental of Python: tes On Data Structure.	Algorithms. Birmin s and Algorithms. Data Structure, 2ı Institute of Aeron	ngham: Packt Publishing L University of Birmingham nd Ed. Boston: Cengange autical Engineering	td , UK Learning Inc.				
Support lecturer	ting Dr. Atik Wintarti, I Dr. Dian Savitri, S Dr. Elly Matul Ima Riska Wahyu Roi	M.Kom. S.Si., M.Si. ah, M.Kom. madhonia, S.Si., M.So	с.							
Week-	Final abilities of each learning stage	Eval	uation	Help Learning, Learning methods, Student Assignments, [Estimated time]		Learning materials [References	Assessment Weight (%)			
	(Sub-PO)	Indicator	Criteria & Form	Offline(offline)	Online (<i>online</i>)	1				
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)			
1	Able to differentiate data types and abstract data structures	 Explain data types and abstract data structures (arrays, structures, and classes) Using abstract data structures in computer programs 	Criteria: Observation of student activities in class (Non-Test) Form of Assessment : Participatory Activities	 Scientific approach: observing, asking, exploring Method: lecture, discussion, question and answer, giving assignments Learning strategy: accentuation of information processing (cognitive) 3 X 50 		Material: Struct Reference: Lambert, Kenneth A. 2019. Fundamentals of Python: Data Structure, 2nd Ed. Boston: Cengange Learning Inc.	2%			
2	Able to integrate linked-list data structures and their forms	 Explain the linked-list data structure, along with its forms (double linked-list, circular linked-list) Using the linked-list data structure and its operations in computer programs 	Criteria: Observation of student activities in class (Non-Test) and Practicum Form of Assessment : Participatory Activities, Practical Assessment	 Scientific approach: observing, asking, exploring Method: lecture, discussion, question and answer, giving assignments Learning strategy: accentuation of information processing (cognitive) 3 X 50 		Material: Linked-List Bibliography: Padmaja, B. 2017. Lecture Notes On Data Structure. Institute of Aeronautical Engineering	3%			
3	Able to integrate Stack data structures and their implementation	 Mention the characteristics of the stack data structure Implementing push operations on the stack in computer programs Implementing the pop operation on the stack and how to declare it in the program 	Criteria: Observation of student activities in class (Non-Test) Form of Assessment : Participatory Activities	 Scientific approach: observing, asking, exploring Method: lecture, discussion, question and answer, giving assignments Learning strategy: accentuation of information processing (cognitive) 3 X 50 		Material: Stack Library: Bullinaria, J. 2019. Lecture Notes for Data Structures and Algorithms. University of Birmingham, UK	2%			

4	Able to integrate queue data structures and their implementation	 Mention the characteristics of the queue data structure Implementing the enqueue operation on queues in computer programs Implementing the dequeue operation on queues in computer programs 	Criteria: Observation of student activities in class (Non-Test) and Practicum Form of Assessment : Practical Assessment	 Scientific approach: observing, asking, exploring Method: lecture, discussion, question and answer, giving assignments Learning strategy: accentuation of information processing (cognitive) 3 X 50 	Material: Queue Reference: Bullinaria, J. 2019. Lecture Notes for Data Structures and Algorithms. University of Birmingham, UK	3%
5	Able to integrate graph data structures and their application	 Mention the characteristics of graph data structures Implementing matrix adjance operations on graphs in computer programs Implementing adjency list operations on graphs in computer programs 	Criteria: Observation of student activities in class (Non-Test) and Practicum Form of Assessment : Practical Assessment	 Scientific approach: observing, asking, exploring Method: lecture, discussion, question and answer, giving assignments Learning strategy: accentuation of information processing (cognitive) 3 X 50 	Material: Graph References: Goodrich, MT, Tamassia R., Goldwasser MH 2013. Data Structures and Algorithms in Python. USA: John Wiley&Sons	3%
6	Able to integrate tree data structures and their application	 Mention the characteristics of tree data structures State the meaning of tree composition (root, leaf, children, ancestors, descendants, interior nodes) Implement basic tree operations in Python programs 	Criteria: Observation of student activities in class (Non-Test) and Practicum Form of Assessment : Participatory Activities, Practical Assessment	 Scientific approach: observing, asking, exploring Method: lecture, discussion, question and answer, giving assignments Learning strategy: accentuation of information processing (cognitive) 3 X 50 	Material: Tree References: Goodrich, MT, Tamassia R., Goldwasser MH 2013. Data Structures and Algorithms in Python. USA: John Wiley&Sons	2%
7	Able to integrate binary-tree data structures and traversal in binary- tree	 Explain the meaning of a binary tree, and its differences from a general tree Explain the differences between preorder traversal, inorder traversal, and postorder traversal Implementing binary tree traversal operations in Python programs 	Criteria: Observation of student activities in class (Non-Test) and Practicum Form of Assessment : Practical Assessment	 Scientific approach: observing, asking, exploring Method: lecture, discussion, question and answer, giving assignments Learning strategy: accentuation of information processing (cognitive) 3 X 50 	Material: Binary Tree References: Goodrich, MT, Tamassia R., Goldwasser MH 2013. Data Structures and Algorithms in Python. USA: John Wiley&Sons	3%

8	Midterm exam	able to complete UTS honestly, correctly and on time	Criteria: UTS test Form of Assessment : Test	Written Exam 3 X 50	Material: Week 1 to Week 7 Material References: Goodrich, MT, Tamassia R., Goldwasser MH 2013. Data Structures and Algorithms in Python. USA: John Wiley&Sons	20%
9	Able to integrate algorithms and their complexity	 Mention the meaning of algorithms Explaining an algorithm about a mathematical topic Analyzing the running time of an algorithm with certain complexity (N2, Nlog N, N) 	Criteria: Observation of student activities in class (Non-Test) Form of Assessment : Participatory Activities	 Scientific approach: observing, asking, exploring Method: lecture, discussion, question and answer, giving assignments Learning strategy: accentuation of information processing (cognitive) 3 X 50 	Material: Algorithmic Complexity References: Lambert, Kenneth A. 2019. Fundamentals of Python: Data Structure, 2nd Ed. Boston: Cengange Learning Inc.	2%
10	Able to integrate sorting algorithms and their implementation	 Explains sorting algorithms, including Linear-sorting algorithms, Selection Sort, Insertion Sort, Bubble Sort, Merge Sort, Quick Sort, and Bucket Sort. Analyze and implement sorting algorithms in programs 	Criteria: Observation of student activities in class (Non-Test) and practicum Form of Assessment : Practical Assessment	 Scientific approach: observing, asking, exploring Method: lecture, discussion, question and answer, giving assignments Learning strategy: accentuation of information processing (cognitive) 3 X 50 	Material: Sorting Algorithm References: Goodrich, MT, Tamassia R., Goldwasser MH 2013. Data Structures and Algorithms in Python. USA: John Wiley&Sons	3%
11	Able to integrate searching algorithms and their application	 Explains searching algorithms, including Linear search algorithms and Binary search trees. Analyze and implement searching algorithms in programs 	Criteria: Observation of student activities in class (Non-Test) Form of Assessment : Participatory Activities	Scientific approach: observing, asking, exploring Method: lecture, discussion, question and answer, giving assignments Learning strategy: accentuation of information processing (cognitive) 3 X 50	Material: Searching Algorithm References: Goodrich, MT, Tamassia R., Goldwasser MH 2013. Data Structures and Algorithms in Python. USA: John Wiley&Sons	2%

12	Able to integrate searching algorithms: Depth First Search and Best First Search	 Explains searching algorithms, including the Depth First Search (DFS) and Best First Search (BFS) algorithms. Analyze and implement DFS and BFS algorithms in programs 	Criteria: Observation of student activities in class (Non-Test) and practicum Form of Assessment : Participatory Activities, Practical Assessment	 Scientific approach: observing, asking, exploring Method: lecture, discussion, question and answer, giving assignments Learning strategy: accentuation of information processing (cognitive) 3 X 50 		Material: Searching Algorithm References: Goodrich, MT, Tamassia R., Goldwasser MH 2013. Data Structures and Algorithms in Python. USA: John Wiley&Sons Material: DFS and BFS Algorithm References: Goodrich, MT, Tamassia R., Goldwasser MH 2013. Data Structures and Algorithms in Python. USA: John Wiley&Sons	3%
13	Able to design computer programs to solve problems related to mathematics	 Students are able to apply the concept of dynamic data structures (linked-list / stack / queue / graph / tree) to the problems raised Students are able to apply the concept of sorting and searching algorithms to the problems raised 	Criteria: Observation of student activities in class (Non-Test) Form of Assessment : Project Results Assessment / Product Assessment	Learning is carried out offline with the following PJBL stages: • Providing basic questions regarding the urgency of the problems raised • Determining the boundaries of the problem in creating the application • Types of abstraction of programming concepts (data structures and algorithms) that will be used • Agreeing on the implementation schedule in working on the 3 X 50 project		Material: Applied to everyday problems References: Goodrich, MT, Tamassia R., Goldwasser MH 2013. Data Structures and Algorithms in Python. USA: John Wiley&Sons	7%
14	Able to design computer programs to solve problems related to mathematics	 Students are able to apply the concept of dynamic data structures (linked-list / stack / queue / graph / tree) to the problems raised Students are able to apply the concept of sorting and searching algorithms to the problems raised 	Criteria: Independent Group Work Form of Assessment : Project Results Assessment / Product Assessment		Learning is carried out online with the PJBL stages as follows: • Students and their groups independently work on a project according to an approved topic • Students receive guidance from the lecturer if they encounter difficulties in working on their project 3 X 50	Material: Applied to everyday problems References: Goodrich, MT, Tamassia R., Goldwasser MH 2013. Data Structures and Algorithms in Python. USA: John Wiley&Sons	5%

15	Able to design computer programs to solve problems related to mathematics	 Students are able to apply the concept of dynamic data structures (linked-list / stack / queue / graph / tree) to the problems raised Students are able to apply the concept of sorting and searching algorithms to the problems raised 	Criteria: Group Progress Presentation Form of Assessment : Project Results Assessment / Product Assessment	Learning is carried out offline with the following PJBL stages: • Monitoring the student process in implementing and realizing the project through presentations of the progress of each group and facilitating students in discussions and questions and answers about the project carried out 3 X 50	Material: Applied to everyday problems References: Goodrich, MT, Tamassia R., Goldwasser MH 2013. Data Structures and Algorithms in Python. USA: John Wiley&Sons	10%
16	Final exams	 Students are able to apply the concept of dynamic data structures (linked-list / stack / queue / graph / tree) to the problems raised Students are able to apply the concept of sorting and searching algorithms to the problems raised 	Criteria: Final Project Presentation Form of Assessment : Project Results Assessment / Product Assessment	Learning is carried out offline with the PJBL stages as follows: • Students present the final results of the project carried out, as well as carry out a demo of the program created with report and presentation provisions according to the template provided. 3 X 50	Material: Applied to everyday problems References: Goodrich, MT, Tamassia R., Goldwasser MH 2013. Data Structures and Algorithms in Python. USA: John Wiley&Sons	30%

Evaluation Percentage Recap: Project Based Learning

No	Evaluation	Percentage
1.	Participatory Activities	12%
2.	Project Results Assessment / Product Assessment	52%
3.	Practical Assessment	16%
4.	Test	20%
		100%

Notes

- Learning Outcomes of Study Program Graduates (PLO Study Program) are the abilities possessed by each Study
 Program graduate which are the internalization of attitudes, mastery of knowledge and skills according to the level of their
 study program obtained through the learning process.
- 2. The PLO imposed on courses are several learning outcomes of study program graduates (CPL-Study Program) which are used for the formation/development of a course consisting of aspects of attitude, general skills, special skills and knowledge.
- 3. **Program Objectives (PO)** are abilities that are specifically described from the PLO assigned to a course, and are specific to the study material or learning materials for that course.
- 4. **Subject Sub-PO (Sub-PO)** is a capability that is specifically described from the PO that can be measured or observed and is the final ability that is planned at each learning stage, and is specific to the learning material of the course.
- 5. **Indicators for assessing** abilities in the process and student learning outcomes are specific and measurable statements that identify the abilities or performance of student learning outcomes accompanied by evidence.
- Assessment Criteria are benchmarks used as a measure or measure of learning achievement in assessments based on predetermined indicators. Assessment criteria are guidelines for assessors so that assessments are consistent and unbiased. Criteria can be quantitative or qualitative.
- 7. Forms of assessment: test and non-test.
- 8. Forms of learning: Lecture, Response, Tutorial, Seminar or equivalent, Practicum, Studio Practice, Workshop Practice, Field Practice, Research, Community Service and/or other equivalent forms of learning.
- 9. Learning Methods: Small Group Discussion, Role-Play & Simulation, Discovery Learning, Self-Directed Learning,
- Cooperative Learning, Collaborative Learning, Contextual Learning, Project Based Learning, and other equivalent methods. 10. Learning materials are details or descriptions of study materials which can be presented in the form of several main points and sub-topics.
- 11. The assessment weight is the percentage of assessment of each sub-PO achievement whose size is proportional to the level of difficulty of achieving that sub-PO, and the total is 100%.
- 12. TM=Face to face, PT=Structured assignments, BM=Independent study.