

Universitas Negeri Surabaya Faculty of Postgraduate School, Master of Technology and Vocational Education Study Program

Document Code

SEMESTER LEARNING PLAN

Courses		COD	CODE			Course Family				0	Credit Weight				SEMES	STER	Cor Dat	npilati e	on	
Artificial intelligence			8310103010							-	Т=3	P=0	ECTS=	6.72	:	1	July	/ 17, 20)24	
AUTHORIZATION			SP Developer							Cou	irse (Clust	er Co	ordinate	or	Study Program Coordinator			tor	
			Prof. Dr. I.G.P. Asto Buditja S.T.,M.T.				ihjanto,								Dr. Ir. Achmad Imam Agung, M.Pd.					
Learning model	Project Based L	earning													I					
Program	PLO study program which is charged to the course																			
Learning Outcomes	Program Objectives (PO)																			
(PLO)	PO - 1	Master the t	heoret	ical c	oncep	ots an	nd prir	nciples	s of A	rtificia	al Inte	elliger	nce.							
	PO - 2	Able to utiliz	e varic	ous al	ternat	tive s	olutio	ns to <i>i</i>	Artific	ial Int	tellige	ence	oroble	ems.						
	PO - 3																			
	PO - 4 Able to produce scientific studies related to Artificial Intelligence.																			
	PLO-PO Matrix																			
		P.	0																	
		PO	-1																	
		PO	-2																	
		PO	-3																	
		PO	-4	1																
	PO Matrix at th	e end of ea	ch lea	rning	g sta	ge (S	Sub-F	0)												
								,												
		P.C)									We	ek							
				1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
		PO-1			<u> </u>						1				1					
		PO-2														+				
		PO-3														+				
		PO-4																		
				<u> </u>													11			
Short Course Description	This course studi Artificial Intelligen										overa	ge co	nsist	s of bas	ic con	icepts c	of Artific	ial Int	elligen	ce,
References	Main :																			
	1. Devendra Berlin He 2. Wolfgang	idelberg			•	0		•							0	ering, (92008 :	Spring	ger-Ver	lag
	Supporters:																			
Supporting lecturer	Prof. Dr. I Gusti P	utu Asto Buc	litjahjar	nto, S	S.T., N	И.Т.														

Week-	Final abilities of each learning stage	Eval	uation	Learr Studen	p Learning, ning methods, it Assignments, timated time]	Learning materials	Assessment Weight (%)	
	(Sub-PO)	Indicator	Criteria & Form	Offline(offline)	Online (<i>online</i>)	[References]		
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	
1	Understanding Artificial Neural Networks and Supervised Learning	 Students are able to explain Adaline Students are able to explain ANN Learning. Students are able to explain Back- Propagation Learning 	Criteria: Students are able to demonstrate and simulate the ANN Learning process Form of Assessment : Participatory Activities	Presentations, Lectures and discussions. 3x 50"		Material: Adaline, ANN Learning, Back- Propagation Learning Reference: Wolfgang Ertel, Introduction to Artificial Intelligence, © Springer- Verlag London Limited 2011	5%	
2	Understanding Factors Affecting the Performance of Artificial Neural Network Models	 Students are able to explain Network Complexity Students are able to explain problem complexity Students are able to explain learning complexity 	Criteria: Students are able to demonstrate and simulate ANN models Form of Assessment : Participatory Activities, Project Results Assessment / Product Assessment	Presentations, Lectures and discussions. 3x 50"		Material: Network Complexity, Problem Complexity, Learning Complexity Reference: Wolfgang Ertel, Introduction to Artificial Intelligence, © Springer- Verlag London Limited 2011	5%	
3	Understanding Factors Affecting the Performance of Artificial Neural Network Models	 Students are able to explain Network Complexity Students are able to explain problem complexity Students are able to explain learning complexity 	Criteria: Students are able to demonstrate and simulate ANN models Form of Assessment : Participatory Activities, Project Results Assessment / Product Assessment	Presentations, Lectures and discussions. 3x 50"		Material: Network Complexity, Problem Complexity, Learning Complexity Reference: Wolfgang Ertel, Introduction to Artificial Intelligence, © Springer- Verlag London Limited 2011	5%	
4	- Understanding the Fuzzy Set Theoretical Approach	 Students are able to explain the Fuzzy Set. Students are able to explain Operations on Fuzzy Sets Students are able to explain the characteristics of fuzzy sets 	Criteria: Students are able to demonstrate and simulate Operations on Fuzzy Sets Form of Assessment : Project Results Assessment / Product Assessment	Presentations, Lectures and discussions. 3x 50"		Material: Fuzzy Set, Operations on Fuzzy Sets, Characteristics of Fuzzy Sets Reference : Devendra K. Chaturvedi, Soft Computing Techniques and its Applications in Electrical Engineering, ©2008 Springer- Verlag Berlin Heidelberg	5%	

5	- Understanding the Fuzzy Set Theoretical Approach	 Students are able to explain the Fuzzy Set. Students are able to explain Operations on Fuzzy Sets Students are able to explain the characteristics of fuzzy sets 	Criteria: Students are able to demonstrate and simulate Operations on Fuzzy Sets Form of Assessment : Project Results Assessment / Product Assessment	Presentations, Lectures and discussions. 3x 50"	Material:Fuzzy Set,Operations oFuzzy Sets,Characteristiof Fuzzy Sets,Characteristiof Fuzzy Sets,Reference:Devendra K.Chaturvedi,SoftComputingTechniquesand itsApplicationsElectricalEngineering,©2008Springer-Verlag BerlinHeidelberg	cs 5
6	- Understanding Applications of Fuzzy Rule Based Systems	 Students are able to explain System's Modeling and Simulation Using Fuzzy Logic Approach. Students are able to explain Control Applications 	Criteria: Students are able to demonstrate and simulate Control Applications using fuzzy Form of Assessment : Project Results Assessment / Product Assessment	Presentations, Lectures and discussions. 3x 50"	Material:System'sModeling andSimulationUsing Fuzzy,ControlApplicationsReference:Devendra K.Chaturvedi,SoftComputingTechniquesand itsApplicationsElectricalEngineering,©2008Springer-Verlag BerlinHeidelberg	in
7	- Understanding Applications of Fuzzy Rule Based Systems	 Students are able to explain System's Modeling and Simulation Using Fuzzy Logic Approach. Students are able to explain Control Applications 	Criteria: Students are able to demonstrate and simulate Control Applications using fuzzy Form of Assessment : Project Results Assessment / Product Assessment	Presentations, Lectures and discussions. 3x 50"	Material: System's Modeling and Simulation Using Fuzzy, Control Applications Reference : Devendra K. Chaturvedi, Soft Computing Techniques and its Applications Electrical Engineering, ©2008 Springer- Verlag Berlin Heidelberg	in
8	UTS	Students are able to demonstrate and simulate UTS questions	Criteria: Able to analyze and present UTS answers Form of Assessment : Project Results Assessment / Product Assessment, Test	3x 50" Presentation	Material: meetings 1-7 References: Devendra K. Chaturvedi, Soft Computing Techniques and its Applications Electrical Engineering, ©2008 Springer- Verlag Berlin Heidelberg Material: meetings 1-7 References: Wolfgang Ertel, Introduction t Artificial Intelligence, Springer- Verlag Londo Limited 2011	o © Dnn

9	- Understanding Genetic Algorithms	 Students can explain the main components of GA. Students can explain the Effect of Mutation Probability on GA Performance 	Criteria: 1. Students can explain the basics of the GA process Form of Assessment : Project Results Assessment / Product Assessment	Presentations, Lectures and discussions.	Material: Main Components of GA, Effect of Mutation Probability on GA Performance Reference: Wolfgang Ertel, Introduction to Artificial Intelligence, © Springer- Verlag London Limited 2011	
10	Understanding Applications of Genetic Algorithms to Load Forecasting Problems	 Students are able to explain the Development of Improved Genetic Algorithm Students are able to explain the Application of Improved Genetic Algorithm 	Criteria: Students are able to demonstrate and simulate the Improved Genetic Algorithm Form of Assessment : Project Results Assessment / Product Assessment	Presentations, Lectures and discussions. 3x 50"	Material:Developmentof ImprovedGeneticAlgorithm,Application ofImprovedGeneticAlgorithmReference:Devendra K.Chaturvedi,SoftComputingTechniquesand itsApplications inElectricalEnegrine,©2008Springer-Verlag BerlinHeidelberg	5%
11	Understanding Applications of Genetic Algorithms to Load Forecasting Problems	 Students are able to explain the Development of Improved Genetic Algorithm Students are able to explain the Application of Improved Genetic Algorithm 	Criteria: Students are able to demonstrate and simulate the Improved Genetic Algorithm Form of Assessment : Project Results Assessment / Product Assessment	Presentations, Lectures and discussions. 3x 50"	Material:Developmentof ImprovedGeneticAlgorithm,Application ofImprovedGeneticAlgorithmReference:Devendra K.Chaturvedi,SoftComputingTechniquesand itsApplications inElectricalEngineering,©2008Springer-Verlag BerlinHeidelberg	5%
12	- Understanding the Synergism of Genetic Algorithms and Fuzzy Systems.	 Students are able to explain the GA-Fuzzy System Approach. Students are able to explain congestion management using GA- Fuzzy Approach 	Criteria: Students are able to demonstrate and simulate the GA-Fuzzy System Approach Form of Assessment : Project Results Assessment / Product Assessment	Presentations, Lectures and discussions. 3x 50"	Material: GA- Fuzzy System Approach, Congestion Management Using GA- Fuzzy Approach Reference: Devendra K. Chaturvedi, Soft Computing Techniques and its Applications in Electrical Engineering, ©2008 Springer- Verlag Berlin Heidelberg	5%

13	- Understanding the Synergism of Genetic Algorithms and Fuzzy Systems.	 Students are able to explain the GA-Fuzzy System Approach. Students are able to explain congestion management using GA- Fuzzy Approach 	Criteria: Students are able to demonstrate and simulate the GA-Fuzzy System Approach Form of Assessment : Project Results Assessment / Product Assessment	Presentations, Lectures and discussions. 3x 50"	F 4 C N L L C C S C C C S C C C S C C C S C C S C C S C C S C C S S C C S S C C S S C C S S C C S S C C S S C S	Material: GA- Fuzzy System Approach, Congestion Management Using GA- Fuzzy Approach Reference: Devendra K. Chaturvedi, Soft Computing Techniques and its Applications in Electrical Engineering, ©2008 Springer- Verlag Berlin Heidelberg	5%
14	Explaining the Integration of Neural Networks and Fuzzy Systems	 Students are able to explain Adaptive Neuro-Fuzzy Inference Systems Students are able to explain the constraints of ANFIS 	Criteria: Students are able to demonstrate and simulate ANFIS Form of Assessment : Project Results Assessment / Product Assessment	Presentations, Lectures and discussions. 3x 50"		Material: Adaptive Neuro-Fuzzy Inference Systems, Constraints of ANFIS Reference: Devendra K. Chaturvedi, Soft Computing Techniques and its Applications in Electrical Engineering, ©2008 Springer- Verlag Berlin Heidelberg	5%
15	Explaining the Integration of Neural Networks and Fuzzy Systems	 Students are able to explain Adaptive Neuro-Fuzzy Inference Systems Students are able to explain the constraints of ANFIS 	Criteria: Students are able to demonstrate and simulate ANFIS Form of Assessment : Project Results Assessment / Product Assessment	Presentations, Lectures and discussions. 3x 50"	 	Material: Adaptive Neuro-Fuzzy Inference Systems, Constraints of ANFIS Reference: Devendra K. Chaturvedi, Soft Computing Techniques and its Applications in Electrical Engineering, ©2008 Springer- Verlag Berlin Heidelberg	5%

16	Implementation of UAS	Students are able to demonstrate and simulate UAS questions	Criteria: Students can explain the answers to UAS questions well Form of Assessment : Project Results Assessment / Product Assessment	3x 50" demo and presentation		Material: meetings 9-15 References: Devendra K. Chaturvedi, Soft Computing Techniques and its Applications in Electrical Engineering, ©2008 Springer- Verlag Berlin Heidelberg Material: meetings 9-15 References: Wolfgang Ertel, Introduction to Artificial Intelligence, © Springer- Verlag London Limited 2011	20%
----	--------------------------	--	---	------------------------------------	--	--	-----

Evaluation Percentage Recap: Project Based Learning

No	Evaluation	Percentage						
1.	Participatory Activities	10%						
2.	Project Results Assessment / Product Assessment	85%						
3.	Test	5%						
		100%						

Notes

- Learning Outcomes of Study Program Graduates (PLO Study Program) are the abilities possessed by each Study
 Program graduate which are the internalization of attitudes, mastery of knowledge and skills according to the level of their
 study program obtained through the learning process.
- 2. The PLO imposed on courses are several learning outcomes of study program graduates (CPL-Study Program) which are used for the formation/development of a course consisting of aspects of attitude, general skills, special skills and knowledge.
- 3. **Program Objectives (PO)** are abilities that are specifically described from the PLO assigned to a course, and are specific to the study material or learning materials for that course.
- 4. **Subject Sub-PO (Sub-PO)** is a capability that is specifically described from the PO that can be measured or observed and is the final ability that is planned at each learning stage, and is specific to the learning material of the course.
- 5. **Indicators for assessing** ability in the process and student learning outcomes are specific and measurable statements that identify the ability or performance of student learning outcomes accompanied by evidence.
- 6. Assessment Criteria are benchmarks used as a measure or measure of learning achievement in assessments based on predetermined indicators. Assessment criteria are guidelines for assessors so that assessments are consistent and unbiased. Criteria can be quantitative or qualitative.
- 7. Forms of assessment: test and non-test.
- 8. Forms of learning: Lecture, Response, Tutorial, Seminar or equivalent, Practicum, Studio Practice, Workshop Practice, Field Practice, Research, Community Service and/or other equivalent forms of learning.
- 9. Learning Methods: Small Group Discussion, Role-Play & Simulation, Discovery Learning, Self-Directed Learning,
- Cooperative Learning, Collaborative Learning, Contextual Learning, Project Based Learning, and other equivalent methods.
 10. Learning materials are details or descriptions of study materials which can be presented in the form of several main points and sub-topics.
- 11. The assessment weight is the percentage of assessment of each sub-PO achievement whose size is proportional to the level of difficulty of achieving that sub-PO, and the total is 100%.
- 12. TM=Face to face, PT=Structured assignments, BM=Independent study.