

Universitas Negeri Surabaya Faculty of Mathematics and Natural Sciences Chemistry Masters Study Program

Document Code

SEMESTER LEARNING PLAN

Courses		C	ODE				Cou	rse F	amily	у	Cred	lit We	ight		SE	MEST	ER	Cor Dat	npilat e	ior
Structure and Spectroscopy of Organic Molecules			1020301	5				ipulso Iram S			T=3	P=0	ECTS	6=6.72		2		Jan 202	uary 1 3	5,
AUTHORIZA	TION	SF	P Develo	ber						Cours	se Clu	ster (Coordi	nator	Stu	udy Pr	rogram	n Coor	dinate	or
					Dr. Ratih Dewi Saputri,S.Si., M.Si.					Prof. I	Dr. Su	yatno	, M.Si.		Prof. Dr. Nuniek Herdyastur M.Si.			ıti		
Learning model	Case Studies	·																		
Program	PLO study pr	ogram wł	nich is c	harge	ed to	the	cour	se												
Learning Outcomes	Program Obj	ectives (P	ctives (PO)																	
(PLO) PO - 1 Master the concepts in ultraviolet-visible spectroscopy and be able to apply them in predictin absorption wavelength of an organic compound							g the	maxin	าน											
	PO - 2	organic compounds																		
	PO - 3	and carbon atoms in organic compounds																		
	PO - 4	compounds based on their fragmentation patterns																		
	PO - 5		Elucidating the structure of organic compounds based on a combination of ultraviolet-visible, infrared, NMR and mass spectroscopy data																	
	PLO-PO Matr	ix																		
			PO-2 PO-3 PO-4 PO-5																	
	PO Matrix at	the end of	f each le	arnir	ng sta	age (Sub-	PO)												
				i –																1
			P.O	<u> </u>	-	-		_				Week			4.6					
		PO-1		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
		PO-2																		1
		PO-3																		
		PO-4																		
		PO-5																		
							in in	frarec	l spe	ectroso	сору, І	NMR	spectro	oscopy	' (1H-	NMR.	13C-N	MR, 2	2D-NN	1F
Course	This course ex mass spectroso	amines ultr copy, as we	aviolet-vi ell as eluc	sible : idatio	spect n of tl	rosco ne mo	olecul	ar stri	uctur	e of o	rganic	com	ounds	based	d on s	spectro	oscopio	c data.		
Short Course Description References	mass spectroso	amines ultr copy, as we	aviolet-vi ell as eluc	sible : idatio	spect n of tl	rosco ne mo	blecul	ar str	uctur	e of o	rganic	com	ounds	based	d on s	spectro	oscopio	c data.		

	9	 Silverstein, R.M., Webster, F.X. & Kiemle, D.J.2005. Spectrometric Identification of Organic Compounds. New York: John Wiley & Sons, Inc. Shriner, R.L., Hermann, C.K.F., Morril, T.C., Curtin, D.Y. & Fuson, R.C2004. The Systematic Identification of Organic Compounds. USA: John Wiley & Sons, Inc. Creswell, C.J., Runquist, O.A. & Campbell, M.M. 1982. Analisis Spektrum Senyawa Organic. Bandung : ITB. Suyatno.2016. Penentuan Struktur Molekul Senyawa Organik dengan Metode Spektroskopi. Surabaya: Unesa University Press. Saputri, et al., 2024, Macahuilettiin A, a new isoprenylated flavanone from the leaves of Macaranga hullettii King ex Hook and their antiplasmodial activity, Vietnam J. Chem, 1-5 							
Support		 (Pityrog 2. Breitma 3. McLaffe 4. Pretsch Zürich a 5. Dachrig 6. Saputri, leaves o 7. Saputri, Stevens 8. Saputri, 	 ktno dan Nurul Hidajati (2009). Karakterisasi Senyawa Aktif Antikanker dan Antioksidan dari Tumbuhan Paku Perak rogramma calomelanos). Laporan Penelitian Strategis Nasional. Universitas Negeri Surabaya maier, E., 1995, Structure Elucidation by NMR in Organic Chemistry, John Willey & Sons afferty, F.W., and Turecek, F., 1993., Interpretation of Mass Spectra, University Science Books, Sausalito, California sch, E., Buhlmann, P., Badertscher, M., 2009, Organic Structure Analysis, Springer-Verlag Berlin Heidelberg 2009, h and Minneapolis nriyanus, 2004, Analisis Struktur Senyawa organik Secara Spektroskopi, Universitas Andalas, Padang, Sumatra Barat ttri, R.D., Tjahjandarie, T.S., Tanjung, M. 2021. Two novel coumarins bearing an acetophenone derivative from the so of Melicope quercifolia. Nat. Prod. Res. 35(8): 1256-1261 ttri, Ratih, et al., 2024, Xanthine Oxidase Inhibitory Activity of Xanthones from Calophyllum pseudomole P. F. ens, Trop. J. Nat. Prod, 8:1, 5932-5935 ttri, Ratih, et al., 2023, Three novel quinolinone alkaloids from the leeves of Melicope denhamii, Natural Product earch, 37:2, 197-203 						
lecturer	Pro	of. Dr. Tukirar			н	elp Learning,			
Week-	each le stage	bilities of earning	Evalı	uation	Lea Stude	rning methods, ent Assignments, estimated time]	Learning materials [References]	Assessment Weight (%)	
	(Sub-P	(2)	Indicator (3)	Criteria & Form (4)	Offline(offline)	Online (<i>online</i>) (6)	(7)		
1	spectr detern chrom	olet-visible um data to nine ophore s in organic	 Explain the origins of UVVis spectroscopy Explain the types of electron transitions in UV-Vis spectroscopy Explain the types of chromophore groups in organic compounds Distinguish between bathochromic shift, hypsochromic shift, hypsochromic effect Predicting the UV-Vis absorption wavelength of diene, enone, polyene and aromatic 	Criteria: Based on the assessment rubric that has been created by the teaching lecturer Form of Assessment : Participatory Activities	Method: Discussion, question and answer, problem solving, and assignment Model: Direct instruction and case study 3 x 50 minutes	Method: Discussion, question and answer, problem solving, and assignment Model: Direct instruction and case study 3 x 50 minutes	Material: 1. Origin of UV-Vis spectroscopy 2. Types of electron transitions 3. Chromophore groups 4. Bathochromic, hypsochromic effects and hypochromic effects References: <i>Silverstein, RM,</i> <i>Webster, FX &</i> <i>Kiemle, DJ2005.</i> <i>Spectrometric</i> <i>Identification of</i> <i>Organic</i> <i>Compounds.</i> <i>New York: John</i> <i>Wiley & Sons,</i> <i>Inc.</i>	7%	

2	Able to use ultraviolet-visible spectrum data to determine chromophore groups in organic compounds	Predicting the UV-Vis absorption wavelength of diene, enone, polyene and aromatic systems using Woodward and Fieser-Kuhn's rules	Criteria: Based on the assessment rubric that has been created by the teaching lecturer Form of Assessment : Participatory Activities, Tests	Method: Discussion, question and answer, problem solving, and assignment Model: Direct instruction and case study 3 x 50 minutes	Method: Discussion, question and answer, problem solving, and assignment Model: Direct instruction and case study 3 x 50 minutes	Material: Determination of the UV-Vis absorption wavelength of organic compounds using the Woodward and Fieser-Kuhn rules. Reference: <i>Creswell, CJ,</i> <i>Runquist, OA &</i> <i>Campbell, MM</i> <i>1982. Spectrum</i> <i>Analysis of</i> <i>Organic</i> <i>Compounds.</i> <i>Bandung: ITB.</i>	7%
3	Able to use infrared spectrum data to determine the functional group of an organic compound	 Explain the types of bond vibrations in organic compounds Predicting bond vibration frequency values in organic compounds 	Criteria: Based on the assessment rubric that has been created by the teaching lecturer Form of Assessment : Participatory Activities	Method: Discussion, question and answer, problem solving, assignment Model: Direct instruction and case study 3 x 50 minutes	Method: Discussion, question and answer, problem solving, assignment Model: Direct instruction and case study 3 x 50 minutes	Material: 1. Types of bond vibrations 2. Determination of bond vibration frequencies References: Shriner, RL, Hermann, CKF, Morril, TC, Curtin, DY & Fuson, RC.2004. The Systematic Identification of Organic Compounds. USA: John Wiley & Sons, Inc.	5%
4	Able to use infrared spectrum data to determine the functional group of an organic compound	 Explain the main vibrations in the infrared spectrum of an organic compound Determining the functional group of an organic compound based on its infrared spectrum (part-1) 	Criteria: Based on the assessment rubric that has been created by the teaching lecturer Form of Assessment : Participatory Activities, Tests	Method: Discussion, question and answer, problem solving, assignment Model: Direct instruction and case study 3 x 50 minutes	Method: Discussion, question and answer, problem solving, assignment Model: Direct instruction and case study 3 x 50 minutes	Material: 1. Factors that influence the vibrational frequency of bonds 4. Determination of the functional group of an organic compound based on its infrared spectrum (part- 1) Reference: Suyatno.2016. Determination of the Molecular Structure of Organic Compounds using Spectroscopic Methods. Surabaya: University Press.	5%
5	Able to use infrared spectrum data to determine the functional group of an organic compound	Determining the functional group of an organic compound based on its infrared spectrum (part 2)	Criteria: Based on the assessment rubric that has been created by the teaching lecturer Form of Assessment : Participatory Activities	Method: Discussion, question and answer, problem solving, assignment Model: Direct instruction and case study 3 x 50 minutes	Method: Discussion, question and answer, problem solving, assignment Model: Direct instruction and case study 3 x 50 minutes	Material: Determination of the functional group of an organic compound based on the spectrum (part- 2) References: <i>Creswell, CJ,</i> <i>Runquist, OA &</i> <i>Campbell, MM</i> 1982. Spectrum <i>Analysis of</i> <i>Organic</i> <i>Compounds.</i> <i>Bandung: ITB.</i>	5%

NM dat the hyc org cor	le to use 1H- MR spectrum ta to determine e type of drogen atom in ganic mpound blecules	 Explain the working principle of NMR spectroscopy Explain the factors that influence chemical shifts Determine the type of proton in organic compounds Explains spin matchmaking and the resulting effects 	Criteria: Based on the assessment rubric that has been created by the teaching lecturer Form of Assessment : Participatory Activities, Tests	Method: Discussion, question and answer, problem solving, assignment Model: Direct instruction and case study 3 x 50 minutes	Method: Discussion, question and answer, problem solving, assignment Model: Direct instruction and case study 3 x 50 minutes	Material: 1. Working principles of NMR spectroscopy 2. Chemical shifts and influencing factors 3. Spin matching References: Silverstein, RM, Webster, FX & Kiemle, DJ2005. Spectrometric Identification of Organic Compounds. New York: John Wiley & Sons, Inc. Material: 1D NMR	5%
		0				Material: 1D	

7	Able to use 1H- NMR and 13C- NMR spectrum data to determine the types of hydrogen atoms and carbon atoms in organic compound molecules	 Describes techniques for simplifying 1H-NMR spectra Using 1H- NMR spectra to identify the molecular structure of organic compounds 	Criteria: Based on the assessment rubric that has been created by the teaching lecturer Form of Assessment : Participatory Activities, Tests	Method: Discussion, question and answer, problem solving, assignment Model: Direct instruction and case study 3 x 50 minutes	Method: Discussion, question and answer, problem solving, assignment Model: Direct instruction and case study 3 x 50 minutes	Material: 1. Techniques for simplifying the 1H-NMR spectrum 5. Using the 1H- NMR spectrum to identify the molecular structure of organic compounds. Reference: Suyatno.2016. Determination of the Molecular Structure of Organic Compounds using Spectroscopic Methods. Surabaya: Unesa University Press. Material: 1D NMR Spectroscopy References: Shriner, RL, Hermann, CKF, Morril, TC, Curtin, DY & Fuson, RC.2004. The Systematic Identification of Organic Compounds. USA: John Wiley & Sons, Inc.	5%
8	Midterm Exam (Final Skills TM-1 to TM-7)	Assessment indicators TM-1 to TM-7	Criteria: Based on the assessment rubric that has been created by the teaching lecturer Form of Assessment : Participatory Activities	Written test in essay form 2 x 50 minutes	Written test in essay form 2 x 50 minutes		0%

r				1			
9	Able to use 13C- NMR spectrum data to determine the type of carbon atom in organic compound molecules	 Explain the use of 13C- NMR spectrum Determine the type of carbon atom in organic compounds based on the 13C-NMR spectrum Explains the 13C-NMR spectrum of proton decoupling and coupling Explains the spectrum of DEPT 13CNMR Using 1H- NMR and 13C-NMR spectra to identify organic compounds 	Criteria: Based on the assessment rubric that has been created by the teaching lecturer Form of Assessment : Participatory Activities	Method: Discussion, question and answer, problem solving, assignment Model: Direct instruction and case study 3 x 50 minutes	Method: Discussion, question and answer, problem solving, assignment Model: Direct instruction and case study 3 x 50 minutes	Material: 1. Use of 13C-NMR spectroscopy 2. Types of carbon atoms in 13C- NMR spectroscopy 3. DEPT spectrum in 13C-NMR spectroscopy 4. Application of the 13C-NMR spectrum to determine the molecular structure of organic compounds References: <i>Creswell, CJ,</i> <i>Runquist, OA &</i> <i>Campbell, MM</i> 1982. Spectrum <i>Analysis of</i> <i>Organic</i> <i>Compounds.</i> <i>Bandung: ITB.</i> Material: Structure analysis of organic compounds using NMR spectroscopy Reference: <i>Dachriyanus,</i> 2004, Structure analysis of organic compounds using spectroscopy, <i>Andalas</i> <i>University,</i> <i>Padang, West</i> <i>Sumatra</i> Material: Application of structural elucidation of natural compounds. Reference: <i>Saputri, Ratih,</i> <i>et al., 2023,</i> <i>Xanthine</i> <i>Oxidase</i> <i>Inhibitory</i> <i>Activity of</i> <i>Xanthones from</i> <i>Calophyllum</i> <i>pseudomole PF</i> <i>Stevens, Trop.</i> <i>J. Nat. Prod,</i> <i>8:1, 5932-5935</i>	5%

10	Able to use two- dimensional NMR spectrum (2D- NMR) in determining the structure of organic compounds	 Explain the homonuclear correlation spectrum of an organic compound Explains the heteronuclear compound Predicting the structure of an organic compound based on its two- dimensional NMR spectrum (2D-NMR) 	Criteria: Based on the assessment rubric that has been created by the teaching lecturer Form of Assessment : Participatory Activities, Tests	Method: Discussion, question and answer, problem solving, assignment Model: Direct instruction and case study 3 x 50 minutes	Method: Discussion, question and answer, problem solving, assignment Model: Direct instruction and case study 3 x 50 minutes	Material: 1. Homonuclear correlation spectroscopy (1H-1H COSY or DQF COSY) 2. Heteronuclear correlation spectroscopy (HMQC, HMQC) References: Suyatno and Nurul Hidajati (2009). Characterization of Active Anticancer and Antioxidant Compounds from Silver Fern (Pityrogramma calomelanos). National Strategic Research Report. Surabaya State University Material: 2D Heteronuclear Correlation Spectroscopy (HMBC, HMQC) References: Saputri, RD, Tjahjandarie, TS, Tanjung, M. 2021. Two novel coumarins bearing an acetophenone derivative from the leaves of Melicope quercifolia. Nat. Prod. Res. 35(8): 1256- 1261 Material: Application for Development of 2D Heteronuclear Correlation Spectroscopy (HMBC, HMQC) References: Saputri, RD, Tjahjandarie, TS, Tanjung, M. 2021. Two novel coumarins bearing an acetophenone derivative from the leaves of Melicope quercifolia. Nat. Prod. Res. 35(8): 1256- 1261 Material: Application for Development of 2D Heteronuclear Correlation Spectroscopy (HMBC, HMQC, COSY) References: Saputri, et al., 2024, Macahuilettiin A, a new isoprenylated flavanone from the leaves of Macaranga hullottii King ex Hook and their antiplasmodial	5%
11	Able to predict the molecular structure of organic compounds based on NMR spectroscopy	Elucidating the molecular structure of organic compounds based on NMR spectroscopy data	Criteria: Based on the assessment rubric that has been created by the teaching lecturer Form of Assessment : Participatory Activities, Tests	Method: Discussion, question and answer, problem solving, assignment Model: Direct instruction and case study	Method: Discussion, question and answer, problem solving, assignment Model: Direct instruction and case study 3 x 50 minutes	activity, Vietnam J. Chem , 1-5 Material: Structure elucidation of organic molecules based on NMR spectroscopy References: Breitmaier, E., 1995, Structure Elucidation by NMR in Organic Chemistry, John	10%

			Material:	
			Identification of	
			organic	
			molecular	
			compounds	
			using NMR	
			spectroscopy	
			References:	
			Silverstein, RM,	
			Webster, FX &	
			Kiemle, DJ2005.	
			Spectrometric	
			Identification of	
			Organic	
			Compounds.	
			New York: John	
			Wiley & Sons,	
			Inc.	
			Material:	
			Interpretation of	
			Organic	
			Molecular	
			Structures	
			References:	
			Saputri, et al.,	
			2024,	
			Macahuilettiin A,	
			a new	
			a new isoprenylated	
			flavanone from	
			the leaves of	
			Macaranga	
			hullettii King ex	
			Hook and their	
			antiplasmodial	
			activity, Vietnam	
			J. Chem, 1-5	
			5. Onem, 1 5	
			Manager	
			Material:	
			Application of	
			structure	
			elucidation of	
			organic	
			compounds in	
			the field of	
			natural product	
			chemistry	
			References:	
			Saputri, Ratih,	
			et al., 2024,	
			Xanthine	
			Oxidase	
			Inhibitory	
			Activity of	
			Xanthones from	
			Calophyllum	
			pseudomole PF	
			, Stevens, Trop.	
			J. Nat. Prod,	
			8:1, 5932-5935	
			Motorial	
			Material:	
			Structure	
			analysis of	
			organic	
			compounds	
			using NMR	
			spectroscopy	
			Reference:	
			Dachriyanus,	
			2004, Structure	
			2004, Structure	
			analysis of	
			organic	
			compounds	
			compounds using	
			compounds using spectroscopy,	
			compounds using	
			compounds using spectroscopy, Andalas	
			compounds using spectroscopy, Andalas University,	
			compounds using spectroscopy, Andalas	

12	Able to use mass spectroscopy data to determine relative molecular masses and fragmentation patterns of organic compounds	 Explain ionization modes in mass spectroscopy Predicting the molecular structure of organic compounds based on mass spectrum data 	Criteria: Based on the assessment rubric that has been created by the teaching lecturer Form of Assessment : Participatory Activities, Tests	Method: Discussion, question and answer, problem solving, assignment Model: Direct instruction and case study 3 x 50 minutes	Method: Discussion, question and answer, problem solving, assignment Model: Direct instruction and case study 3 x 50 minutes	Material: 1. Ionization modes in mass spectroscopy (EIMS, SIMS, FABMS, CIMS) 2. Use of mass spectroscopy to identify organic compounds. References: Creswell, CJ, Runquist, OA & Campbell, MM 1982. Spectrum Analysis of Organic Compounds. Bandung: ITB.	10%
13	Able to predict the molecular structure of organic compounds based on a combination of visible ultraviolet, infrared, NMR and mass spectroscopy data	 Determining the DBE value in an organic compound molecule Elucidating the molecular structure of organic compounds based on ultraviolet- visible, infrared, NMR and mass spectrum data (part-1) 	Criteria: Based on the assessment rubric that has been created by the teaching lecturer Form of Assessment : Participatory Activities	Method: Discussion, question and answer, problem solving, assignment Model: case method 3 x 50 minutes	Method: Discussion, question and answer, problem solving, assignment Model: case method 3 x 50 minutes	Material: 1. Determination of the DBE value of an organic compound 2. Elucidation of the structure of an organic compound based on a combination of ultraviolet- visible, infrared, NMR and mass spectrum data (bgian-1) References: <i>Silverstein, RM,</i> <i>Webster, FX &</i> <i>Kiemle, DJ2005.</i> <i>Spectrometric</i> <i>Identification of</i> <i>Organic</i> <i>Compounds.</i> <i>New York: John</i> <i>Wiley & Sons,</i> <i>Inc.</i>	10%
14	Able to predict the molecular structure of organic compounds based on a combination of visible ultraviolet, infrared, NMR and mass spectroscopy data	Elucidating the molecular structure of organic compounds based on ultraviolet-visible, infrared, NMR and mass spectrum data (part-2)	Criteria: Based on the assessment rubric that has been created by the teaching lecturer Form of Assessment : Participatory Activities, Tests	Method: Discussion, question and answer, problem solving, assignment Model: Project base learning 3 x 50 minutes	Method: Discussion, question and answer, problem solving, assignment Model: Project base learning 3 x 50 minutes	Material: Elucidation of the structure of organic compounds based on a combination of ultraviolet- visible, infrared, NMR and mass spectrum data. References: Shriner, RL, Hermann, CKF, Morril, TC, Curtin, DY & Fuson, RC.2004. The Systematic Identification of Organic Compounds. USA: John Wiley & Sons, Inc.	10%

15	Able to predict the molecular structure of organic compounds based on a combination of visible ultraviolet, infrared, NMR and mass spectroscopy data	Elucidating the molecular structure of organic compounds based on ultraviolet-visible, infrared, NMR and mass spectrum data (part 3)	Criteria: Based on the assessment rubric that has been created by the teaching lecturer Form of Assessment : Participatory Activities, Tests	Method: Discussion, question and answer, problem solving, assignment Model: Project base learning 3 x 50 minutes	Method: Discussion, question and answer, problem solving, assignment Model: Project base learning 3 x 50 minutes	Material: Elucidation of the structure of organic compounds based on a combination of ultraviolet- visible, infrared, NMR and mass spectrum data (part-3) References: Suyatno.2016. Determination of the Molecular Structure of Organic Compounds using Spectroscopic Methods. Surabaya: Unesa University Press.	6%
16	Final semester exam (UAS) (Final skills TM-9 to TM-15)	TM-9 indicators up to TM-15 indicators	Criteria: Based on the assessment rubric that has been created by the teaching lecturer Form of Assessment : Participatory Activities	Written test in essay form 2 x 50 minutes	Written test in essay form 2 x 50 minutes	Material: Analysis of Organic Compounds using UV, IR, MS and NMR Spectroscopy References: Dachriyanus, 2004, Analysis of the Structure of Organic Compounds Using Spectroscopy, Andalas University, Padang, West Sumatra Material: Identification of organic compounds using UV, IR, NMR, MS spectroscopy. Reference: Silverstein, RM, Webster, FX & Kiemle, DJ2005. Spectrometric Identification of Organic Compounds. New York: John Wiley & Sons, Inc. Material: Determination of the structure of organic molecules using spectroscopic methods. Reference: Suyatno.2016. Determination of the dolecular Structure of Organic Compounds using Spectroscopic Methods. Surabaya: Unesa University Press.	5%

Evaluation Percentage Recap: Case Study

No	Evaluation	Percentage
1.	Participatory Activities	68.5%
2.	Test	31.5%
		100%

Notes

- Learning Outcomes of Study Program Graduates (PLO Study Program) are the abilities possessed by each Study
 Program graduate which are the internalization of attitudes, mastery of knowledge and skills according to the level of
 their study program obtained through the learning process.
- The PLO imposed on courses are several learning outcomes of study program graduates (CPL-Study Program) which are used for the formation/development of a course consisting of aspects of attitude, general skills, special skills and knowledge.
- Program Objectives (PO) are abilities that are specifically described from the PLO assigned to a course, and are specific to the study material or learning materials for that course.
- 4. **Subject Sub-PO (Sub-PO)** is a capability that is specifically described from the PO that can be measured or observed and is the final ability that is planned at each learning stage, and is specific to the learning material of the course.
- 5. **Indicators for assessing** ability in the process and student learning outcomes are specific and measurable statements that identify the ability or performance of student learning outcomes accompanied by evidence.
- 6. Assessment Criteria are benchmarks used as a measure or measure of learning achievement in assessments based on predetermined indicators. Assessment criteria are guidelines for assessors so that assessments are consistent and unbiased. Criteria can be quantitative or qualitative.
- 7. Forms of assessment: test and non-test.
- 8. Forms of learning: Lecture, Response, Tutorial, Seminar or equivalent, Practicum, Studio Practice, Workshop Practice, Field Practice, Research, Community Service and/or other equivalent forms of learning.
- Learning Methods: Small Group Discussion, Role-Play & Simulation, Discovery Learning, Self-Directed Learning, Cooperative Learning, Collaborative Learning, Contextual Learning, Project Based Learning, and other equivalent methods.
- 10. Learning materials are details or descriptions of study materials which can be presented in the form of several main points and sub-topics.
- 11. The assessment weight is the percentage of assessment of each sub-PO achievement whose size is proportional to the level of difficulty of achieving that sub-PO, and the total is 100%.
- 12. TM=Face to face, PT=Structured assignments, BM=Independent study.