

Universitas Negeri Surabaya Faculty of Mathematics and Natural Sciences Chemistry Masters Study Program

Document Code

SEMESTER LEARNING PLAN

Courses	Courses		CODE	Course Fami	ly Credit Weight			ight	SEMESTER	Compilation Date			
Synthesis mo bioactive cor	ethods and desig npounds	n of	4710203016		T=3 P=0 ECTS=6.72			ECTS=6.72	1	July 21, 2023			
AUTHORIZA	TION		SP Developer		Course	Clus	ster C	oordinator	Study Program	Coordinator			
			Prof. Dr. Suyatno, M.Si.		Prof. Dr. Suyatno, M.Si.			M.Si.	Prof. Dr. Nuniek Herdyastu M.Si.				
Learning model	Project Based L	earning	I										
Program	PLO study pro	gram th	at is charged to the course										
Learning Outcomes	Program Object	ctives (P	PO)										
(PLO)	PO - 1	Explain	the meaning, use and basis for o	designing the sy	nthesis o	of org	ganic o	compounds.					
	PO - 2	Applyin	g a synthesis strategy through di	sconnection of	aromatic	comp	pound	s.					
	PO - 3	Implem	enting a synthesis strategy via ca	arbon-heteroato	m bond o	disco	nnect	on.					
	PO - 4	Implem	enting a synthesis strategy via ca	arbon-carbon bo	nd disco	onnec	ction.						
	PO - 5	Applyin	g synthesis strategies via bond d	isconnection in	bifunctio	nal co	ompo	unds.					
	PO - 6	Applyin	g synthesis strategies via bond d	isconnection in	cyclic co	mpou	unds.						
	PO - 7	Applyin	g protecting groups in organic ch	emical synthesi	s reactio	ns							
	PO - 8	Explain	chemoselective and stereoselec	tive reactions ir	in organic chemical synthesis.								
	PO - 9	Review	articles in journals related to the	synthesis of bio	active co	ompo	ounds.						
	PLO-PO Matrix	(
			P.O										
			PO-1										
			PO-2										
			PO-3										
			PO-4										
			PO-5										
			PO-6										
			PO-7										
			PO-8										
			PO-9										
	PO Matrix at th	ne end o	f each learning stage (Sub-P	0)									
	1												

		P.0								Wee	k						
			1	2	3	4 5	6	7	8	9	10	11	12	13	14	15	16
		PO-1															
		PO-2															
		PO-3															
		PO-4															
		PO-5															
		PO-6															
		PO-7															
		PO-8															
		PO-9															
																	<u>.</u>
Descriptio Reference	bioactive compou	s, protecting groups nds.	s, chemo	oseie		and stere			action	is, ap	plicatio		syntnet	ic reac		the s	synthesis d
		hers, W. & Coldam, el B. Smith, M.B. &	March,	j. (20					anic (Cherr	nistry, F						
	3. 3. Tukirai	sey: Jonh Wiley and n dan Suyatno (201 S. & Wyatt, P. (200	.8). Sinte	esis ł									don: Jo	hn Wile	ey and S	Sons,	Inc.
	3. 3. Tukirai	n dan Suyatno (201	.8). Sinte	esis ł									lon: Jo	hn Wile	ey and s	Sons,	Inc.
	3. 3. Tukirau 4. Warren, s Supporters:	n dan Suyatno (201	.8). Sinte 8). Orga	esis ł inic S	Synthe	sis: the D	isconn						don: Jo	hn Wile	ey and s	Sons,	Inc.
Supportin lecturer	3. 3. Tukirau 4. Warren, s Supporters: 1. Artikel jur	n dan Suyatno (201 S. & Wyatt, P. (200 mal yang terkait der , M.Si. M.Si.	.8). Sinte 8). Orga	esis ł inic S	Synthe	sis: the D	isconn						don: Jo	hn Wile	ey and s	Sons,	Inc.
Week-	3. 3. Tukirau 4. Warren, s Supporters: 1. Artikel jur prof. Dr. Suyatno Prof. Dr. Suyatno Prof. Dr. Tukiran, Dr. Ratih Dewi Sa Final abilities of each learning	n dan Suyatno (201 S. & Wyatt, P. (200 mal yang terkait der , M.Si. M.Si. aputri, S.Si., M.Si.	.8). Sinte 8). Orga	esis ł inic S	Synthe	sis: the D	isconn	L Stu	Appro Helj .earn	p Lea ing n t Ass		ls, nts,	don: Jo	Lea	ey and s	As	ssessmen
Week-	3. 3. Tukirau 4. Warren, s Supporters: 1. Artikel jun prof. Dr. Suyatno Prof. Dr. Tukiran, Dr. Ratih Dewi Sa	n dan Suyatno (201 S. & Wyatt, P. (200 mal yang terkait der , M.Si. M.Si. aputri, S.Si., M.Si.	.8). Sintu 8). Orga ngan sin	esis H Inic S ntesis	synthe	sis: the D	tif	L Stu	Help earn Jdent [Est	p Lea ing n t Ass	2nd E rrning, nethod ignme ed time	ls, nts,		Lea mat	rning	As	Inc.
Week-	3. 3. Tukirau 4. Warren, s Supporters: 1. Artikel jun prof. Dr. Suyatno Prof. Dr. Tukiran, Dr. Ratih Dewi Sa Final abilities of each learning stage	n dan Suyatno (201 S. & Wyatt, P. (200 mal yang terkait der , M.Si. M.Si. aputri, S.Si., M.Si.	.8). Sintu 8). Orga ngan sin	esis H nic S ntesis	synthe senya	awa bioa	tif	L Stu	Heli earn udent [Est ()	p Lea ing n t Ass	2nd E rrning, nethod ignme ed time	ls, nts, e] online)	Lea mat [Refe	rning erials rences 7)	As	ssessmen

2	Understand synthesis strategies through bond disconnection in aromatic compounds.	Applying a synthesis strategy through bond disconnection in aromatic compounds.	Criteria: Based on the assessment rubric that has been created by the teaching lecturer. Form of Assessment : Participatory Activities	Discussion, questions and answers, problem solving, and assignment Model: case method' 3 x 50 minutes	Material: Synthesis strategy through bond disconnection in aromatic compoundsReferences: Tukiran and Suyatno (2018). Organ Chemical Synthesis. Surabaya: University Press.Material: Synthesis strategy through bond disconnection in aromatic compoundsMaterial: References: Warren, S. & Wyatt, P. (2008). Organ Synthesis: that Proces Synthesis through bond disconnection in aromatic compounds References: Warren, S. & Wyatt, P. (2008). Organ Synthesis: the Disconnection Approach. 2nd Ed. London: John Wiley an Sons, Inc.	c
3	Understand synthesis strategies through bond disconnection in aromatic compounds.	Applying a synthesis strategy through bond disconnection in aromatic compounds.	Criteria: Based on the assessment rubric that has been created by the teaching lecturer. Form of Assessment : Participatory Activities	Discussion, questions and answers, problem solving, and assignment Model: case method' 3 x 50 minutes	Material: Synthesis strategy through bond disconnection in aromatic compoundsReferences: Tukiran and Suyatno (2018). Organ Chemical Synthesis. Surabaya: Unesa University Press.Material: Synthesis strategy through bond disconnection in aromatic compoundsReferences: Waterial: Synthesis strategy through bond disconnection in aromatic compoundsReferences: Waterial: Synthesis strategy through bond disconnection in aromatic compounds References: Warren, S. & Wyatt, P. (2008). Organ Synthesis: the Disconnection Approach. 2nc Ed. London: John Wiley an Sons, Inc.	с г
4	Understand synthesis strategies through disconnection of carbon-heteroatom bonds and carbon- carbon bonds.	Applying synthesis strategies through disconnection of carbon-heteroatom and carbon-carbon bonds.	Criteria: Based on the assessment rubric that has been created by the teaching lecturer. Form of Assessment : Participatory Activities	Discussion, questions and answers, problem solving, and assignment Model: case method 3 x 50 minutes	Material: Synthesis strategy through carbon heteroatom bond disconnection. References: 1 Carruthers, W & Coldam, I. (2004). Moder Methods of Organic Synthesis. 4th Ed. New York: Cambridge University Press.	1

5	Understand synthesis strategies through disconnection of carbon-heteroatom bonds and carbon- carbon bonds.	Applying synthesis strategies through disconnection of carbon-heteroatom and carbon-carbon bonds.	Criteria: Based on the assessment rubric that has been created by the teaching lecturer. Form of Assessment : Participatory Activities	Discussion, questions and answers, problem solving, and assignment Model: case method 3 x 50 minutes	Material: Synthesis strategy through carbon- heteroatom bond disconnection. References: 1. Carruthers, W. & Coldan, I. (2004). Modern Methods of Organic Synthesis. 4th Ed. New York: Cambridge University Press.	5%
6	Understand synthesis strategies through disconnection of compounds that have 2 functional groups (bifunctional): 1,2; 1.3; 1.4; 1.5 and 1.6.	Applying a synthesis strategy through disconnection of compounds that have 2 functional groups: 1,2; 1.3; 1.4; 1.5 and 1.6.	Criteria: Based on the assessment rubric that has been created by the teaching lecturer. Form of Assessment : Participatory Activities	Discussion, questions and answers, problem solving, and assignment Model: case method 3 x 50 minutes	Material: compound disconnection that has 2 functional groups: 1.2; 1.3; 1.4; 1.5 and 1.6. References: 1. <i>Carruthers, W.</i> & Coldam, I. (2004). Modern Methods of Organic Synthesis. 4th Ed. New York: Cambridge University Press.	5%
7	Understand synthesis strategies through disconnection of compounds that have 2 functional groups (bifunctional): 1,2; 1.3; 1.4; 1.5 and 1.6.	Applying a synthesis strategy through disconnection of compounds that have 2 functional groups: 1,2; 1.3; 1.4; 1.5 and 1.6.	Criteria: Based on the assessment rubric that has been created by the teaching lecturer. Form of Assessment : Participatory Activities	Discussion, questions and answers, problem solving, and assignment Model: case method 3 x 50 minutes	Material: compound disconnection that has 2 functional groups: 1,2; 1.3; 1.4; 1.5 and 1.6. References: Warren, S. & Wyat, P. (2008). Organic Synthesis: the Disconnection Approach. 2nd Ed. London: John Wiley and Sons, Inc.	5%
8	Mid-Semester Exam to assess the achievement of Final Skills from TM 1 to 7	Sub-summative test, carried out once, assessing all relevant indicators through a written test (UTS) and given a weighting (2)	Criteria: Based on the assessment rubric that has been created by the teaching lecturer. Form of Assessment : Participatory Activities, Tests	Test 2 x 50 minutes	Material: all material 1-7 References: 1. Carruthers, W. & Coldam, I. (2004). Modern Methods of Organic Synthesis. 4th Ed. New York: Cambridge University Press. Material: all materials 1-7 References: Warren, S. & Wyatt, P. (2008). Organic Synthesis: the Disconnection Approach. 2nd Ed. London: John Wiley and Sons, Inc.	10%

9	Understand the synthesis strategy through disconnection of cyclic compounds that have rings 3,4,5 and 6.	Applying a synthesis strategy through disconnecting compounds that have rings 3, 4, 5 and 6.	Criteria: Based on the assessment rubric that has been created by the teaching lecturer. Forms of Assessment : Participatory Activities, Project Results Assessment / Product Assessment /	discussion, question and answer, problem solving, assignment Model: case method. 3 × 50 minutes	of cyc comp havin 3,4,5 Refer Tukira Suyat (2018 Chen Synth Surat Unex Press Unive Press Mate Synth Strate throug disco of cyc comp havin 3,4,5 Refer Warra Synth Sy	nesis 2gy gh nnection clic bounds g rings and 6. rences: 3. an and tho 3). Organic nical nesis. baya: a ersity s. rial: nesis ggh nnection clic bounds g rings and 6. rences: ersity s. rial: nesis ggh nnection clic bounds g rings and 6. rences: ersity s. rial: nesis ersity s. rial: nesis ersity s. rial: nection clic bounds g rings and 6. rences: en, S. & t, P. a). Organic nection clic bounds ig rings and 6. rences: en, S. & t, P. a). Organic nection boach. 2nd ondon: Wiley and	5%
10	Understand the synthesis strategy through disconnection of cyclic compounds that have rings 3,4,5 and 6.	Applying a synthesis strategy through disconnecting compounds that have rings 3, 4, 5 and 6.	Criteria: Based on the assessment rubric that has been created by the teaching lecturer. Forms of Assessment : Participatory Activities, Project Results Assessment / Product Assessment	discussion, question and answer, problem solving, assignment Model: case method. 3 x 50 minutes	of cyc comp havin 3,4,5 Refer Tukira Suyau (2018 Chen Synth Surat Unex Press Unive Press Mate Synth strate throug disco of cyc comp havin 3,4,5 Refer Warra Synth Sy	nesis 2gy gh nnection clic bounds g rings and 6. rences: 3. an and tho 3). Organic nical nesis. baya: a ersity s. rial: nesis ggy gh nnection clic bounds g rings and 6. rences: ersity s. rist ggy gh nnection clic bounds g rings and 6. rences: ersity s. s. rial: nesis ersis	5%

11	Understand the meaning, selection of protective groups and their application in the synthesis of organic compounds.	 Explain the meaning of protective groups. Explain the selection of protective groups. Applying protecting groups in organic synthesis. 	Criteria: Based on the assessment rubric that has been created by the teaching lecturer. Form of Assessment : Participatory Activities	Discussion, question and answer, problem solving, assignment Model: case method 3 x 50 minutes	Material: 1. Understanding protective groups and 2. Use of protective groups in organic synthesis. References: 3. <i>Tukiran and</i> <i>Suyatno</i> (2018). Organic <i>Chemical</i> <i>Synthesis.</i> <i>Surabaya:</i> <i>Unesa</i> <i>University</i> <i>Press.</i>	5%
12	Understanding chemoselective and stereoselective in organic synthesis.	 Explain chemoselectiveness in organic synthesis. Explaining stereoselectivity in organic synthesis. 	Criteria: Based on the assessment rubric that has been created by the teaching lecturer. Forms of Assessment : Participatory Activities, Project Results Assessment / Product Assessment	Discussion, questions and answers, problem solving, assignments Model: Model: case method 3 x 50 minutes	Material: 1. Chemoselective in organic synthesis and 2. Stereoselective in organic synthesis. References: Warren, S. & Wyatr, P. (2008). Organic Synthesis: the Disconnection Approach. 2nd Ed. London: John Wiley and Sons, Inc.	5%
13	Able to review journal articles related to the synthesis of bioactive compounds.	Able to review journal articles related to the synthesis of bioactive compounds	Criteria: Based on the assessment rubric that has been created by the teaching lecturer. Form of Assessment : Project Results Assessment / Product Assessment	Discussion, question and answer, problem solving, assignment Model: Project based learning 3 x 50 minutes	Material: Review of bioactive compound synthesis articles in national and international journals. Bibliography: Journal articles related to the synthesis of bioactive compounds	10%
14	Able to review journal articles related to the synthesis of bioactive compounds.	Able to review journal articles related to the synthesis of bioactive compounds	Criteria: Based on the assessment rubric that has been created by the teaching lecturer. Form of Assessment : Project Results Assessment / Product Assessment	Discussion, question and answer, problem solving, assignment Model: Project based learning 3 x 50 minutes	Material: Review of bioactive compound synthesis articles in national and international journals. Bibliography: Journal articles related to the synthesis of bioactive compounds	10%
15	Able to review journal articles related to the synthesis of bioactive compounds.	Able to review journal articles related to the synthesis of bioactive compounds	Criteria: Based on the assessment rubric that has been created by the teaching lecturer. Form of Assessment : Project Results Assessment / Product Assessment	Discussion, question and answer, problem solving, assignment Model: Project based learning 3 x 50 minutes	Material: Review of bioactive compound synthesis articles in national and international journals. Bibliography: Journal articles related to the synthesis of bioactive compounds	10%

16	Final exams	Final exams	Criteria: 5 Form of Assessment : Test	Final Exam Semester 2 x 50 minutes		Material: all materials 9-15 References: 3. Tukiran and Suyatno (2018). Organic Chemical Synthesis. Surabaya: University Press. Material: all material 9-15 Bibliography: 2. Michael B. Smith, MB & March, J. (2007). March's Advanced Organic Chemistry, Reaction, Mechanism, and Structure, 6th ed. New Jersey: Jonh Wiley and Son, Inc.	5%
----	-------------	-------------	---	---	--	---	----

Evaluation Percentage Recap: Project Based Learning

LVU	Evaluation reformage recoup. Troject Based Ecanning						
No	Evaluation	Percentage					
1.	Participatory Activities	52.5%					
2.	Project Results Assessment / Product Assessment	37.5%					
3.	Test	10%					
		100%					

Notes

- Learning Outcomes of Study Program Graduates (PLO Study Program) are the abilities possessed by each Study
 Program graduate which are the internalization of attitudes, mastery of knowledge and skills according to the level of their study
 program obtained through the learning process.
- 2. The PLO imposed on courses are several learning outcomes of study program graduates (CPL-Study Program) which are used for the formation/development of a course consisting of aspects of attitude, general skills, special skills and knowledge.
- 3. **Program Objectives (PO)** are abilities that are specifically described from the PLO assigned to a course, and are specific to the study material or learning materials for that course.
- 4. **Subject Sub-PO (Sub-PO)** is a capability that is specifically described from the PO that can be measured or observed and is the final ability that is planned at each learning stage, and is specific to the learning material of the course.
- 5. Indicators for assessing ability in the process and student learning outcomes are specific and measurable statements that identify the ability or performance of student learning outcomes accompanied by evidence.
- 6. Assessment Criteria are benchmarks used as a measure or measure of learning achievement in assessments based on predetermined indicators. Assessment criteria are guidelines for assessors so that assessments are consistent and unbiased. Criteria can be quantitative or qualitative.
- 7. Forms of assessment: test and non-test.
- 8. Forms of learning: Lecture, Response, Tutorial, Seminar or equivalent, Practicum, Studio Practice, Workshop Practice, Field Practice, Research, Community Service and/or other equivalent forms of learning.
- 9. Learning Methods: Small Group Discussion, Role-Play & Simulation, Discovery Learning, Self-Directed Learning, Cooperative Learning, Collaborative Learning, Contextual Learning, Project Based Learning, and other equivalent methods.
- 10. Learning materials are details or descriptions of study materials which can be presented in the form of several main points and sub-topics.
- 11. The assessment weight is the percentage of assessment of each sub-PO achievement whose size is proportional to the level of difficulty of achieving that sub-PO, and the total is 100%.
- 12. TM=Face to face, PT=Structured assignments, BM=Independent study.