

Universitas Negeri Surabaya Faculty of Mathematics and Natural Sciences Chemistry Masters Study Program

Document Code

SEMESTER LEARNING PLAN

Courses		CODE	CODE				Course Family			Cred	lit We	ight	S	EMEST	ER	Com Date	npilatio e	
Characterization of Bioactive Compounds			47102020	4710202052			E	Study Program Elective		ram	T=2	P=0	ECTS=4.	48	2		Janu 2023	ıary 28, 3
AUTHORIZATION			SP Develo	SP Developer				es		rse C	luste	r	St	udy Pi	rogran	n Coor	dinato	
			Prof. Dr. N	luniel	k Her	dyast	uti, M	.Si		Prof M.P		Rudiai	na Agustini	, F	Prof. Dr		ek Hero Si.	dyastu
Learning model	Case Studies																	
Program	PLO study p	rogra	um that is char	ged	to th	e co	urse											
Learning Outcomes	Program Obj			J														
(PLO)	PO - 1	M	aster theoretical enzymes, prote NA															
	PO - 2	A id	ble to solve scie entifying enzyme	ntific es, pr	and otein	techn s and	ologi DNA	cal p from	robler vario	ms in ous s	the f ource	ield o s as v	f biochemi vell as app	stry ar ying re	id have elevant	e skills techno	in isola blogy	ating a
	PO - 3 Able to determine isolation, identification and characterization techniques for proteins, enzymes and DNA that will be determined in several cases																	
	PLO-PO Mat	rix																
			P.0 P0-1															
			PO-2 PO-3															
			F0-3															
	PO Matrix at	the e	end of each lea	arnin	g sta	age (Sub-	PO)										
				1								14/						
			P.0	-				_		_		Wee		10	10		45	10
			DO 1	1	2	3	4	5	6	7	8	9	10 11	12	13	14	15	16
			PO-1 PO-2															
			PO-2 PO-3															
Short Course Description			ns the study of s and DNA from											e isol	ation o	of enz	ymes,	protei
References	Main :																	
	2. Bollag 3. Boyer	D. 19 R, 20 B.R.,a	, 1989, Genetics 996. Protein Metl 900 . Modern Exp 900 Pasternak,	hod . perim J.J.,1	New ental	York: Biocł	: Johr hemis	n Will try .	ey an San F	d So ranc	ns. In isco: /	c Addiso	on Wesley	` Longn	nan	,		ant DN
			, D.C : ASM Pre R.R. and Griffiths		, 199	3, Ba	sic Bi	oche	mical	Meth	nods,	New `	York : Johr	Willey	/ and S	ions. Ir	IC	

		Evalu	ation		Help Learning, earning methods, ident Assignments,		
Week-	Final abilities of each learning stage (Sub-PO)	Indicator	Criteria & Form		Conline (<i>online</i>)	Learning materials [References]	Assessment Weight (%)
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
1	understand the nature of proteins and environmental factors that can influence the results of protein or enzyme isolation	 Explain the basic properties of proteins Explain buffer solutions and how to make them Explain how to store proteins with buffer solutions Mention several examples of salts and metal ions and their effects on proteins 5.5. Define detergent compounds and explain the effect of detergents on proteins or enzymes Explain the effect of surface, temperature and storage on proteins or enzymes 	Criteria: Based on the assessment rubric that has been created by the teaching lecturer Form of Assessment : Participatory Activities		Discussion and questions and answers	Material: Properties of proteins and environmental factors that can influence the results of protein or enzyme isolation. Reference: <i>Bollag D. 1996.</i> <i>Protein Method.</i> <i>New York: John Willey and</i> <i>Sons. Inc</i>	0%
2	understand protein or enzyme isolation techniques, protein identification and concentration	 Explain the types of cells as sources of protein Able to differentiate between extracellular and intracellular proteins or enzymes Able to choose protein or enzyme breakdown techniques whether physical, chemical or enzymatic Able to explain protein concentration techniques and their stages Able to explain the basic principles of the dialysis process 	Criteria: Based on the assessment rubric that has been created by the teaching lecturer Form of Assessment : Participatory Activities		Presentation and discussion	Material: protein or enzyme isolation techniques, protein identification and concentration. Reference: <i>Bollag D.</i> 1996. <i>Protein Method.</i> <i>New York: John</i> <i>Willey and</i> <i>Sons. Inc</i>	6%

3	determine protein concentration or enzyme activity and enzyme kinetics	 Able to explain the basic principles of determining protein concentration using several methods (Bradford, Lowry, BCA) Able to calculate protein concentration via a standard curve Able to determine the method used to calculate the activity of isolated enzymes 	Criteria: Based on the assessment rubric that has been created by the teaching lecturer Form of Assessment : Participatory Activities	Class presentations and discussions	Material: Determination of protein concentration or enzyme activity and enzyme kinetics Reference: Boyer R, 2000. Modern Experimental Biochemistry. San Francisco: Addison Wesley Longman	6%
4	understand the technique of determining molecular weight using SDS-PAGE (Sodium Dodecyl Sulphate - polyacrylamide gel electrophoresis)	 Able to explain the SDS-PAGE mechanism Able to explain the stages of the SDS-PAGE process Able to choose the gel concentration and explain how to make it Able to explain the sample preparation and running process Able to choose the type of staining gel used with Comassie blue or silver nitrate Able to determine the molecular weight of proteins or enzymes using SDS-PAGE 	Criteria: Based on the assessment rubric that has been created by the teaching lecturer Form of Assessment : Participatory Activities	Class presentations and discussions	Material: technique for determining molecular weight using SDS-PAGE (Sodium Dodecyl Sulphate - polyacrylamide gel electrophoresis) References: Bollag D. 1996. Protein Method. New York: John Willey and Sons. Inc	5%

5	understand protein or enzyme purification methods	 Able to differentiate crude protein/enzyme extract from pure protein/enzyme Describes several ways to purify proteins or enzymes Explain the immunoblotting method Explain the purification of proteins or enzymes using the ion exchange chromatography method Explains the purification of proteins or enzymes using the gel filtration method Explain the purification of proteins or enzymes using the gel filtration method Explain the purification of proteins or enzymes using the affinity chromatography method 	Criteria: Based on the assessment rubric that has been created by the teaching lecturer Form of Assessment : Participatory Activities		l discussions	Material: protein or enzyme purification methods. Reference: Bollag D. 1996. Protein Method. New York: John Willey and Sons. Inc	5%
6	master the concepts regarding isolation, characterization and application of proteins or enzymes based on relevant articles	analyze concepts regarding the isolation, characterization and application of carbohydrates based on relevant articles	Form of Assessment : Participatory Activities		cussion	Material: Analysis of one of the articles related to the isolation, characterization and application of carbohydrates based on that article. Reference: Boyer R, 2000. Modern Experimental Biochemistry. San Francisco: Addison Wesley Longman	5%
7	master the concepts regarding isolation, characterization and application of carbohydrates based on relevant articles	Analysis of articles related to the isolation, characterization and application of carbohydrates based on these articles	Criteria: Based on the assessment rubric that has been created by the teaching lecturer Form of Assessment : Project Results Assessment / Product Assessment	to th char appl carb	alyze articles related he isolation, tracterization and blication of bohydrates based these articles	Material: Analysis of articles related to the isolation, characterization and application of carbohydrates based on these articles. Reference: Boyer R, 2000. Modern Experimental Biochemistry. San Francisco: Addison Wesley Longman	5%
8	UTS		Form of Assessment : Test				15%

9	Able to understand the concept of bioactive compounds that can be produced by nucleic acids	Students accurately understand the concept of techniques for obtaining bioactive compounds from lipids as well as identification and characterization	Form of Assessment : Participatory Activities	Students look for articles from journals from the last 5 years related to bioactive compound material (by writing journal name, author, year, volume, number) and make a summary of articles relevant to the material 2 x 50	Material: Articles on bioactive nucleic acid compounds. Reference: Alexander RR and Griffiths JM, 1993, Basic Biochemical Methods, New York: John Willey and Sons. Inc	5%
10	Able to understand the concept of bioactive compounds that can be produced by nucleic acids	Students are able to understand bioactive compounds obtained from nucleic acids	Form of Assessment : Participatory Activities, Tests	Discuss articles related to bioactive nucleic acid compounds that students have obtained in week 9 2 x 50	Material: Articles on bioactive nucleic acid compounds. Reference: Alexander RR and Griffiths JM, 1993, Basic Biochemical Methods, New York: John Willey and Sons. Inc Material: Recombinant DNA Bibliography: Glick, BR, and Pasternak, JJ, 1994, Molecular Biotechnology : Principles and Application of Recombinant DNA, Washington, DC : ASM Press.	5%
11	Able to understand techniques for obtaining bioactive nucleic acid compounds as well as identification and characterization	Students are able to understand the concept of techniques for obtaining bioactive nucleic acid compounds as well as identification and characterization	Form of Assessment : Participatory Activities, Tests	Discuss the isolation, identification and characterization techniques for 2 x 50 nucleic acid bioactive compounds	Material: EXPLORATION AND TESTING OF BIOACTIVE BACTERIAL COMPOUNDS OF BIOLOGICAL AGENSIA TO CONTROL CRACK DISEASE IN RICE References:	5%
12	Able to understand techniques for obtaining bioactive nucleic acid compounds as well as identification and characterization	Students are able to understand the concept of techniques for obtaining bioactive nucleic acid compounds as well as identification and characterization	Form of Assessment : Participatory Activities	Student presentations based on articles on bioactive nucleic acid compounds that have been analyzed 2 x 50	Material: Articles on bioactive nucleic acid compounds. Reference: Alexander RR and Griffiths JM, 1993, Basic Biochemical Methods, New York: John Willey and Sons. Inc Material: Articles on bioactive nucleic acid compounds References:	8%

13	Able to understand techniques for obtaining bioactive compounds from lipids as well as identification and characterization	Students master the technical concepts of obtaining bioactive lipid compounds as well as identification and characterization	Form of Assessment : Participatory Activities, Tests	Discuss techniques for isolation, identification and characterization of bioactive compounds from lipids 2 x 50	Material: Bioactive Lipid Activity Test against SARS- CoV-2 Reference: Boyer R, 2000. Modern Experimental Biochemistry. San Francisco: Addison Wesley Longman Material: Bioactive Lipid Activity Test against SARS- CoV-2 References:	5%
14	Able to understand techniques for obtaining bioactive compounds from lipids as well as identification and characterization	Students accurately understand the concept of techniques for obtaining bioactive compounds from lipids as well as identification and characterization	Form of Assessment : Participatory Activities, Portfolio Assessment	Student presentations based on articles on bioactive compounds from lipids that have been analyzed 2 x 50	Material: Articles on bioactive compounds from lipids Reference: Boyer R, 2000. Modern Experimental Biochemistry. San Francisco: Addison Wesley Longman	8%
15	Able to understand techniques for obtaining bioactive compounds from lipids as well as identification and characterization	Students are able to understand techniques for obtaining bioactive compounds from lipids as well as identification and characterization	Form of Assessment : Participatory Activities, Portfolio Assessment	Student presentations based on articles on bioactive compounds from lipids that have been analyzed 2 x 50	Material: Articles on bioactive compounds from lipids Reference: Boyer R, 2000. Modern Experimental Biochemistry. San Francisco: Addison Wesley Longman	8%
16	Able to understand techniques for obtaining bioactive compounds from lipids as well as identification and characterization	Students are able to master the technical concepts of obtaining bioactive compounds from lipids as well as identification and characterization	Form of Assessment : Participatory Activities, Portfolio Assessment	Student presentations based on articles on bioactive compounds from lipids that have been analyzed 2 x 50	Material: Articles on bioactive compounds from lipids Reference: Boyer R, 2000. Modern Experimental Biochemistry. San Francisco: Addison Wesley Longman	9%

Evaluation Percentage Recap: Case Study

No	Evaluation	Percentage
1.	Participatory Activities	60%
2.	Project Results Assessment / Product Assessment	5%
3.	Portfolio Assessment	12.5%
4.	Test	22.5%
		100%

Notes

- 1. Learning Outcomes of Study Program Graduates (PLO Study Program) are the abilities possessed by each Study Program graduate which are the internalization of attitudes, mastery of knowledge and skills according to the level of their study program obtained through the learning process.
- The PLO imposed on courses are several learning outcomes of study program graduates (CPL-Study Program) which are used for the formation/development of a course consisting of aspects of attitude, general skills, special skills and knowledge.

- 3. **Program Objectives (PO)** are abilities that are specifically described from the PLO assigned to a course, and are specific to the study material or learning materials for that course.
- 4. **Subject Sub-PO (Sub-PO)** is a capability that is specifically described from the PO that can be measured or observed and is the final ability that is planned at each learning stage, and is specific to the learning material of the course.
- 5. Indicators for assessing abilities in the process and student learning outcomes are specific and measurable statements that identify the abilities or performance of student learning outcomes accompanied by evidence.
- 6. Assessment Criteria are benchmarks used as a measure or measure of learning achievement in assessments based on predetermined indicators. Assessment criteria are guidelines for assessors so that assessments are consistent and unbiased. Criteria can be quantitative or qualitative.
- 7. Forms of assessment: test and non-test.
- 8. Forms of learning: Lecture, Response, Tutorial, Seminar or equivalent, Practicum, Studio Practice, Workshop Practice, Field Practice, Research, Community Service and/or other equivalent forms of learning.
- 9. Learning Methods: Small Group Discussion, Role-Play & Simulation, Discovery Learning, Self-Directed Learning, Cooperative Learning, Collaborative Learning, Contextual Learning, Project Based Learning, and other equivalent methods.
- **10. Learning materials** are details or descriptions of study materials which can be presented in the form of several main points and sub-topics.
- 11. The assessment weight is the percentage of assessment of each sub-PO achievement whose size is proportional to the level of difficulty of achieving that sub-PO, and the total is 100%.
- 12. TM=Face to face, PT=Structured assignments, BM=Independent study.