

Universitas Negeri Surabaya Vocational Faculty, D4 Electrical Engineering Study Program

Document Code

SEMESTER LEARNING PLAN

Courses				CODE				Cou	irse F	amily	,		Cr	edit	Weig	ht	SEN	IESTER	Cor Dat	mpilati te	ion
Basic Engineering Mathematics				20401022	996					T=0 P=0 ECTS=			ECTS=0		1 July 17, 2024		024				
AUTHOR	RIZAT	ION		SP Devel	oper						Co Co	urse ordir	Clu nato	uste or	r		Stu Coc	dy Progr ordinator	am		
												Mahendra Widyartono, S.T., M.T.									
Learning model	I	Project Based L	.earning	1																	
Program	1	PLO study pro	gram th	nat is char	ged to	the cou	rse														
Outcom	es	Program Object	ctives (I	PO)																	
(PLO)		PO - 1	. Unde functior	rstand the ns, exponen	concep itial fun	ts of Set ctions, ve	s and ctors,	func comp	tions, lex n	, funct umber	ions a s, diffe	and g erenti	grap ials	ohs, and	Boole integ	ean alge rals.	ebra, 1	trigonome	etric	and w	ave
		PLO-PO Matrix	(
	P.0 P0-1																				
		PO Matrix at th	e end o	of each lea	rning	stage (S	ub-P	0)													
			PO-	P.O 1	1	2 3	4	5	6	7	8	Wee 9	ek 1	LO	11	12	13	14	15	16	
Short Understanding Real Fur Course Integrals, Transcendent F Description				nctions, Lim -unctions, Ir	nits and ntegrati	d Rates on Techn	of Ch iques.	ange,	, Der	ivative	s, Ap	plicat	tion	s of	Diffe	erentiatio	on, Int	tegrals, A	\pplic	cations	of
Referen	ces	Main :																			
	 1. Danang Mursita. (2011). Matematika untuk Perguruan Tinggi. Rekayasa Sains: Bandung. 2. James Stewa KALKULUS. Jilid 1, Alih Bahasa: I Nyoman Susila, Hendra Gunawan. Penerbit Erlangga: Jakarta. 							ewar	rt. (200	01).											
		Supporters:																			
Support lecturer	ing	Dr. Lilik Anifah, S Handini Novita S	S.T., M.T ari, S.Pc	I., M.T.													_				
Week-	Fine eac stag (Su	nal abilities of ch learning age uh-PQ)		Evaluation				1	Help Learning, Learning methods, Student Assignments, [Estimated time] Offline (Online (online)			Le ma Ref	arning aterials [erences 1	As: W	sessm eight (ent %)					
(1)		(2)		(3)			(4)			of	fline)	j	(0)				(7)		(8)		
(1)		(2)		(3)			141				101				101				1	101	

1	Explanation of learning signs for the 2018-2019 odd semester lectures including how to assess them. Able to solve the Real Number System, Algebraic Inequalities and Absolute Values as well as Functions and graphs	1. Solving rational split inequalities 2. Solving absolute inequalities 3. Determining the domain, range, and drawing graphs with shifts from known functions (algebraic and trigonometric functions) 4. Calculating/determining algebraic and trigonometric limits.	Criteria: 1.1. Maximum scoring of 100 for each formative test or PTS and PAS 2.2. Follow the UNESA scoring format: participation (2), Assignments (3), PTS (2) and PS (3) 3.3. Minimum attendance requirement is 75% Form of Assessment : Participatory Activities	Model/Method: Approach: Scientific Method: Question and answer, discussion and assignment Model: Direct learning model Strategy: assignment and presentation in turns. 2 X 50		5%
2	Explanation of learning signs for the 2018-2019 odd semester lectures including how to assess them. Able to solve the Real Number System, Algebraic Inequalities and Absolute Values as well as Functions and graphs	1. Solving rational split inequalities 2. Solving absolute inequalities 3. Determining the domain, range, and drawing graphs with shifts from known functions (algebraic and trigonometric functions) 4. Calculating/determining algebraic and trigonometric limits.	Criteria: 1.1. Maximum scoring of 100 for each formative test or PTS and PAS 2.2. Follow the UNESA scoring format: participation (2), Assignments (3), PTS (2) and PS (3) 3.3. Minimum attendance requirement is 75% Form of Assessment : Participatory Activities	Model/Method: Approach: Scientific Method: Question and answer, discussion and assignment Model: Direct learning model Strategy: assignment and presentation in turns. 2 X 50		5%
3	1. Able to solve function derivatives using limit definitions. 2. Able to determine the first derivative using function derivative formulas 3. Able to solve high level derivatives 4. Able to solve the derivatives 4. Able to solve the derivative of a function for implicit functions 5. Able to apply function derivative theory to solve speed & acceleration problems. 6. Able to apply function derivative theory to solve tangent gradient problems, tangent line equations and normal lines 7. Able to apply function derivative theory to solve infinite limit problems	1. Solve the derivative of the function using the limit definition. 2. Determine the first derivative using function derivative formulas 3. Solve high level derivatives 4 Solve the derivatives 4 Solve the derivative of a function for implicit functions 5. Apply function derivative theory to solve speed & acceleration problems. 6. Apply function derivative theory to solve tangent gradient problems, tangent line equations and normal lines 7. Apply function derivative theory to solve infinite limit problems	Criteria: 1.Assessment Criteria: 2.1. Maximum scoring of 100 for each formative test or PTS and PAS 3.2. Follow the UNESA scoring format: participation (2), Assignments (3), PTS (2) and PS (3) 4.3. Minimum attendance requirement is 75% Form of Assessment : Participatory Activities	Approach: Scientific Method: Question and answer, discussion and assignment Model: Direct learning model Strategy: assignment and presentation in turns. 3 X 50		5%

4	1. Able to solve function derivatives using limit definitions. 2. Able to determine the first derivative using function derivative formulas 3. Able to solve high level derivatives 4. Able to solve the derivative of a function for implicit functions 5. Able to apply function derivative theory to solve speed & acceleration problems. 6. Able to apply function derivative theory to solve tangent gradient problems, tangent line equations and normal lines 7. Able to apply function derivative theory to solve infinite limit problems	 Solve the derivative of the function using the limit definition. 2. Determine the first derivative using function derivative formulas 3. Solve high level derivatives 4 Solve the derivative of a function for implicit function 5. Apply function derivative theory to solve speed & acceleration problems. Apply function derivative theory to solve tangent gradient problems, tangent line equations and normal lines 7. Apply function derivative theory to solve infinite limit problems 	Criteria: 1.Assessment Criteria: 2.1. Maximum scoring of 100 for each formative test or PTS and PAS 3.2. Follow the UNESA scoring format: participation (2), Assignments (3), PTS (2) and PS (3) 4.3. Minimum attendance requirement is 75% Form of Assessment : Participatory Activities	Approach: Scientific Method: Question and answer, discussion and assignment Model: Direct learning model Strategy: assignment and presentation in turns. 3 X 50		5%
5	1. Able to solve function derivatives using limit definitions. 2. Able to determine the first derivative using function derivative formulas 3. Able to solve high level derivatives 4. Able to solve the derivatives 4. Able to solve the derivative of a function for implicit functions 5. Able to apply function derivative theory to solve speed & acceleration problems. 6. Able to apply function derivative theory to solve tangent gradient problems, tangent line equations and normal lines 7. Able to apply function derivative theory to solve infinite limit problems	1. Solve the derivative of the function using the limit definition. 2. Determine the first derivative using function derivatives formulas 3. Solve high level derivatives 4 Solve the derivative of a function for implicit functions 5. Apply function derivative theory to solve speed & acceleration problems. 6. Apply function derivative theory to solve tangent gradient problems, tangent line equations and normal lines 7. Apply function derivative theory to solve infinite limit problems	Criteria: 1.Assessment Criteria: 2.1. Maximum scoring of 100 for each formative test or PTS and PAS 3.2. Follow the UNESA scoring format: participation (2), Assignments (3), PTS (2) and PS (3) 4.3. Minimum attendance requirement is 75% Form of Assessment : Project Results Assessment / Product Assessment	Approach: Scientific Method: Question and answer, discussion and assignment Model: Direct learning model Strategy: assignment and presentation in turns. 3 X 50		5%
6	Group Presentation 1 - 3 (related to real numbers, rational fractional inequalities and absolute values) Group 4 - 6 Presentation (related to graphs of functions, implicit and explicit first derivatives, and higher order derivatives) Group Presentation 7 - 9 (related to derivative applications)	Group Presentation 1 - 3 (related to real numbers, rational fractional inequalities and absolute values) Group 4 - 6 Presentation (related to graphs of functions, implicit and explicit first derivatives, and higher order derivatives) Group Presentation 7 - 9 (related to derivative applications)	Criteria: 1.Assessment Criteria: 2.1. Maximum scoring of 100 for each formative test or PTS and PAS 3.2. Follow the UNESA scoring format: participation (2), Assignments (3), PTS (2) and PS (3) 4.3. Minimum attendance requirement is 75% Form of Assessment : Project Results Assessment / Product Assessment	Approach: Scientific Method: Question and answer, discussion and assignment Model: Cooperative Learning Model Strategy: assignment and presentation in turns. 2 X 50		5%

7	Group Presentation 1 - 3 (related to real numbers, rational fractional inequalities and absolute values) Group 4 - 6 Presentation (related to graphs of functions, implicit and explicit first derivatives, and higher order derivatives) Group Presentation 7 - 9 (related to derivative applications)	Group Presentation 1 - 3 (related to real numbers, rational fractional inequalities and absolute values) Group 4 - 6 Presentation (related to graphs of functions, implicit and explicit first derivatives, and higher order derivatives) Group Presentation 7 - 9 (related to derivative applications)	Criteria: 1.Assessment Criteria: 2.1. Maximum scoring of 100 for each formative test or PTS and PAS 3.2. Follow the UNESA scoring format: participation (2), Assignments (3), PTS (2) and PS (3) 4.3. Minimum attendance requirement is 75% Form of Assessment : Project Results Assessment / Product Assessment	Approach: Scientific Method: Question and answer, discussion and assignment Model: Cooperative Learning Model Strategy: assignment and presentation in turns. 2 X 50		10%
8	Group Presentation 1 - 3 (related to real numbers, rational fractional inequalities and absolute values) Group 4 - 6 Presentation (related to graphs of functions, implicit and explicit first derivatives, and higher order derivatives) Group Presentation 7 - 9 (related to derivative applications)	Group Presentation 1 - 3 (related to real numbers, rational fractional inequalities and absolute values) Group 4 - 6 Presentation (related to graphs of functions, implicit and explicit first derivatives, and higher order derivatives) Group Presentation 7 - 9 (related to derivative applications)	Criteria: 1.Assessment Criteria: 2.1. Maximum scoring of 100 for each formative test or PTS and PAS 3.2. Follow the UNESA scoring format: participation (2), Assignments (3), PTS (2) and PS (3) 4.3. Minimum attendance requirement is 75% Form of Assessment : Project Results Assessment / Product Assessment	Approach: Scientific Method: Question and answer, discussion and assignment Model: Cooperative Learning Model Strategy: assignment and presentation in turns. 2 X 50		10%
9	Mid-Semester Assessment (PTS) Material for Meetings 1 to 8	Mid-Semester Assessment (PTS) Material for Meetings 1 to 8	Criteria: 1.Assessment Criteria: 2.1. Maximum scoring of 100 for each formative test or PTS and PAS 3.2. Follow the UNESA scoring format: participation (2), Assignments (3), PTS (2) and PS (3) 4.3. Minimum attendance requirement is 75% Form of Assessment : Participatory Activities	Mid-Semester Assessment (PTS) Meeting Materials 1 to 8 1 X 50		5%

10	- Students can determine integrals as anti- derivatives in indefinite integrals - Students can determine definite integrals and can determine the properties of an integral whether definite or indefinite Students can determine integrals using existing formulas, both algebraic integral formulas and trigonometric functions	- Students can determine integrals as anti-derivatives in indefinite integrals - Students can determine definite integrals and can determine the properties of an integral whether definite or indefinite Students can determine integrals using existing formulas, both algebraic integral formulas and trigonometric functions	Criteria: 1.1. Maximum scoring of 100 for each formative test or PTS and PAS 2.2. Follow the UNESA scoring format: participation (2), Assignments (3), PTS (2) and PS (3) 3.3. Minimum attendance requirement is 75% Form of Assessment : Participatory Activities	Approach: Scientific Method: Question and answer, discussion and assignment Model: Direct learning model Strategy: assignment and presentation in turns. 4 X 50		5%
11	- Students can determine integrals as anti- derivatives in indefinite integrals - Students can determine definite integrals and can determine the properties of an integral whether definite or indefinite Students can determine integrals using existing formulas, both algebraic integral formulas and trigonometric functions	- Students can determine integrals as anti-derivatives in indefinite integrals - Students can determine definite integrals and can determine the properties of an integral whether definite or indefinite Students can determine integrals using existing formulas, both algebraic integral formulas and trigonometric functions	Criteria: 1.1. Maximum scoring of 100 for each formative test or PTS and PAS 2.2. Follow the UNESA scoring format: participation (2), Assignments (3), PTS (2) and PS (3) 3.3. Minimum attendance requirement is 75% Form of Assessment : Participatory Activities	Approach: Scientific Method: Question and answer, discussion and assignment Model: Direct learning model Strategy: assignment and presentation in turns. 4 X 50		5%
12	- Students can determine integrals as anti- derivatives in indefinite integrals - Students can determine definite integrals and can determine the properties of an integral whether definite Students can determine integrals using existing formulas, both algebraic integral formulas and trigonometric functions	- Students can determine questions related to integrals, discuss assignments in groups - Determine the activity for each group in the presentation Students can determine integrals using integral techniques by characterizing the characteristics of the problem	Form of Assessment : Participatory Activities	2 X 50		5%
13	- Students can determine questions related to integrals, discuss assignments in groups - Determine the activity for each group in the presentation Students can determine integrals using integral techniques by characteristics of the problem	- Students can determine questions related to integrals, discuss assignments in groups - Determine the activity for each group in the presentation Students can determine integrals using integral techniques by characterizing the characterizing the problem, both algebraic integral formulas and exponential and inverse functions	Form of Assessment : Participatory Activities, Project Results Assessment / Product Assessment	2 X 50		5%

14	- Students can determine questions related to integrals, discuss assignments in groups - Determine the activity for each group in the presentation Students can determine integrals using integral techniques by characteristics of the problem, both algebraic integral formulas and exponential and inverse functions	- Students can determine questions related to integrals, discuss assignments in groups - Determine the activity for each group in the presentation Students can determine integrals using integral techniques by characterizing the characteristics of the problem	Form of Assessment : Project Results Assessment / Product Assessment	2 X 50		10%
15	- Students can determine the application of the integral to the area of a flat plane to the %2 axis (pian to the %2 axis) - Students can determine the application of the integral to the area of a flat plane to the y-axis (pian to the y-axis) - Students can determine the application of the integral to the volume of a rotating object to axis%2 (pias to axis%2) Students can determine the application of the integral to the volume of a rotating object to the y-axis (pias to the y-axis) - Students can determine the application of the integral to the volume of a rotating object to the y-axis (pias to the y-axis) - Students can determine the application of the integral to the length of a curve, both ordinary functions, parameters	- Students can determine the application of the integral to the area of a flat plane to the %2 axis (pian to the %2 axis) - Students can determine the application of the integral to the area of a flat plane to the y-axis (pian to the y-axis) - Students can determine the application of the integral to the volume of a rotating object to axis%2 (pias to axis%2) Students can determine the application of the integral to the volume of a rotating object to the y-axis (pias to the y-axis) - Students can determine the application of the integral to the length of a curve, both ordinary functions, parameters		2 X 50		0%
16	- Students can determine the application of the integral to the area of a flat plane to the %2 axis (pian to the %2 axis) - Students can determine the application of the integral to the area of a flat plane to the y-axis (pian to the y-axis) - Students can determine the application of the integral to the volume of a rotating object to axis%2 (pias to axis%2) Students can determine the application of the integral to the volume of a rotating object to axis%2 (pias to the y-axis) - Students can determine the application of the integral to the volume of a rotating object to the y-axis (pias to the y-axis) - Students can determine the application of the integral to the unders and determine the application of the integral to the length of a curve, both ordinary functions, parameters	- Students can determine the application of the integral to the area of a flat plane to the %2 axis (pian to the %2 axis) - Students can determine the application of the integral to the area of a flat plane to the y-axis (pian to the y-axis) - Students can determine the application of the integral to the volume of a rotating object to axis%2 (pias to axis%2 (pias to axis%2) Students can determine the application of the integral to the volume of a rotating object to the y-axis (pias to the y-axis) - Students can determine the application of the integral to the length of a curve, both ordinary functions, parameters	Form of Assessment : Project Results Assessment / Product Assessment	2 X 50		15%

Evaluation Percentage Recap: Project Based Learning

No	Evaluation	Percentage
1.	Participatory Activities	42.5%

2.	Project Results Assessment / Product Assessment	57.5%
		100%

Notes

- Learning Outcomes of Study Program Graduates (PLO Study Program) are the abilities possessed by each Study
 Program graduate which are the internalization of attitudes, mastery of knowledge and skills according to the level of their study
 program obtained through the learning process.
- 2. The PLO imposed on courses are several learning outcomes of study program graduates (CPL-Study Program) which are used for the formation/development of a course consisting of aspects of attitude, general skills, special skills and knowledge.
- 3. **Program Objectives (PO)** are abilities that are specifically described from the PLO assigned to a course, and are specific to the study material or learning materials for that course.
- 4. **Subject Sub-PO (Sub-PO)** is a capability that is specifically described from the PO that can be measured or observed and is the final ability that is planned at each learning stage, and is specific to the learning material of the course.
- 5. Indicators for assessing abilities in the process and student learning outcomes are specific and measurable statements that identify the abilities or performance of student learning outcomes accompanied by evidence.
- 6. Assessment Criteria are benchmarks used as a measure or measure of learning achievement in assessments based on predetermined indicators. Assessment criteria are guidelines for assessors so that assessments are consistent and unbiased. Criteria can be quantitative or qualitative.
- 7. Forms of assessment: test and non-test.
- 8. Forms of learning: Lecture, Response, Tutorial, Seminar or equivalent, Practicum, Studio Practice, Workshop Practice, Field Practice, Research, Community Service and/or other equivalent forms of learning.
- 9. Learning Methods: Small Group Discussion, Role-Play & Simulation, Discovery Learning, Self-Directed Learning,
- Cooperative Learning, Collaborative Learning, Contextual Learning, Project Based Learning, and other equivalent methods. 10. Learning materials are details or descriptions of study materials which can be presented in the form of several main points and sub-topics.
- 11. The assessment weight is the percentage of assessment of each sub-PO achievement whose size is proportional to the level of difficulty of achieving that sub-PO, and the total is 100%.
- 12. TM=Face to face, PT=Structured assignments, BM=Independent study.