

Universitas Negeri Surabaya Vocational Faculty, D4 Electrical Engineering Study Program

Document Code

				SEM	IES	STE	ER	LEA	ARN	IIN	IG F	PLA	N				
Cour	ses			CODE					Cours	e Fa	mily	Cre	Credit Weight		SEM	ESTER	Compilation Date
Engineering Physics			20401030555					T=0	P=0	ECTS=0		1	July 17, 2024				
AUTH	IORIZATIO	N		SP Dev	elope	er					Cour					Study Program Coordinator	
														Ma		Widyartono, , M.T.	
Learr		Project Based Lo	earning												1		
Prog		PLO study prog	gram th	at is cl	narge	d to	the c	course									
	omes	Program Objec	Program Objectives (PO)														
(PLO))	PLO-PO Matrix															
			P.O														
		PO Matrix at the	e end o	end of each learning stage (Sub-PO)													
			P.C								W	/eek					
				1	2	3	4	5	6 7	7	8 9) 1	0 1	1 12	13	14	15 16
	t Course ription	This course cons mechanical engir circular motion, N	neering.	The ba	sic ph	nysics	s pres	sented	scusse: include	s the	e basio	c phy alculu	sics o	engineer -dimension	ing, es	specially ition, pro	the basics of jectile motion,
Refe	rences	Main :															
		 Halliday, david, dan Robert Resnick (diterjemahkan oleh Pantur silaban dan Erwin Sucipto), Fisika jilid I Edisi Ketiga jakarta: Penerbit Erlangga,1987. Sears, F.W. dan M.W.Zemansky (disadur oleh Ir. Soedarjana dan Drs. Amir Achmad). Fisika untuk Universitas 1 bandung: Penerbit ITM, 1984. 							3 ,								
		Supporters:															
Supp lectu	orting rer	Dr. Puput Wanart Miftahur Rohman			T., M.	T.											
Week-	learning				Evalu	atior	า				Learnii Student		Help Learning, earning methods, ident Assignments, [Estimated time]		Learning materials		Assessment Weight (%)
	(Sub-PO)		Ir	ndicato		С	riteria	a & For	m		line (line)	0	nline (online)	References]		3()
(1)		(2)		(3)			((4)		(!	5)		(6	5)		(7)	(8)

			1	T	,	
1	Students can understand and solve problems related to two- dimensional motion	1.Understand the position of objects 2.understand the speed of objects 3.understand the acceleration of objects	Lectures, discussions, problem solving and questions and answers 2 X 50			0%
2	Students can understand and solve problems related to gradient, divergence and curl, line integrals, surface and volume theorems of Gauss and Stokes in Cartesian, polar and cylindrical coordinate systems	1.Understand gradients, divergence and curl. 2.Understand line, surface and volume integrals 3.Understand the Gauss and Stokes theorems on Cartesian, polar and cylindrical coordinate systems	Lectures, discussions and questions and answers 2 X 50			0%
3	Understanding Electric Force: Electric Charge and Coulomb's LawUnderstanding the Concept of Electric Field, Electric Field by Point Charge Distribution and Electric Field by Continuous Charge DistributionUnderstanding electric field flux, Gauss's Law and applying it.	1.Students can understand Electric Force: Electric Charge and Coulomb's Law 2.Students can understand the concept of electric fields, electric fields by point charge distribution and electric fields by continuous charge distribution 3.Students can understand electric field flux, Gauss's Law and apply it.	Lectures, discussions and questions and answers 3 X 50			0%
4	Understanding Electric Force: Electric Charge and Coulomb's LawUnderstanding the Concept of Electric Field, Electric Field by Point Charge Distribution and Electric Field by Continuous Charge DistributionUnderstanding electric field flux, Gauss's Law and applying it.	1.Students can understand Electric Force: Electric Charge and Coulomb's Law 2.Students can understand the concept of electric fields, electric fields by point charge distribution and electric fields by continuous charge distribution 3.Students can understand electric field flux, Gauss's Law and apply it.	Lectures, discussions and questions and answers 3 X 50			0%

		ī		ı	1	1
5	Explain and understand	1.Calculate the		Lectures,		0%
	magnetic fields Explain the concepts of Ampere's	Lorentz Force		discussions,		
	Law and Biot Savart's	experienced by		exercises		
	Law, and apply them	a charge		3 X 50		
	Understand Faradav's	moving in a				
	Law of Induction and	magnetic field.				
	inductance	2.Calculating the				
		Lorentz Force				
		experienced by				
		an electric				
		current in a				
		magnetic field.				
		3.Calculating the				
		torque in an				
		electric current				
		loop				
		4.Explains the				
		concepts of				
		Ampere's Law				
		and Biot				
		Savart's Law,				
		as well				
		Calculate the				
		magnitude of				
		the magnetic				
		flux in an area.				
		Calculating the				
		induced emf in				
		a conductor				
		and in a coil				
		using Faraday's				
		Law and Lenz's				
		Law				
		7.Explain the				
		concept of				
		inductance.				
		8.Calculating the				
Ì		self-inductance				
Ì		of the coil.				
Ì		9.Calculate				
		magnetic				
		energy and				
Ì		density.				
Ì		10.Calculate the				
		mutual				
		inductance of				
		two coils				
Ì		LWU CUIIS				
1						
<u> </u>		ļ	Į	ļ		

6	Explain and understand	 Calculate the 	Lectures,		0%
	magnetic fields Explain the concepts of Ampere's	Lorentz Force	discussions,		
	Law and Biot Savart's	experienced by	exercises		
	Law, and apply them	a charge	3 X 50		
	Understand Faraday's	moving in a			
	Law of Induction and	magnetic field.			
	inductance				
		2.Calculating the			
		Lorentz Force			
		experienced by			
		an electric			
		current in a			
		magnetic field.			
		Calculating the			
		torque in an			
		electric current			
		loop			
		4.Explains the			
		concepts of			
		Ampere's Law			
		and Biot			
		Savart's Law,			
		·			
		as well			
		5.Calculate the			
		magnitude of			
		the magnetic			
		flux in an area.			
		Calculating the			
		induced emf in			
		a conductor			
		and in a coil			
		using Faraday's			
		Law and Lenz's			
		Law			
		7.Explain the			
		concept of			
		inductance.			
		8.Calculating the			
		self-inductance			
		of the coil.			
		9.Calculate			
		magnetic			
		energy and			
		density.			
		10.Calculate the			
		mutual			
		inductance of			
		two coils			
			l		

			1	1	1	
7	Explain and understand	1.Calculate the	Lectures,			0%
	magnetic fields Explain	Lorentz Force	discussions,			
	the concepts of Ampere's	experienced by	exercises			
	Law and Biot Savart's Law, and apply them	a charge	3 X 50			
	Understand Faraday's	moving in a				
	Law of Induction and	magnetic field.				
	inductance					
		2.Calculating the				
		Lorentz Force				
		experienced by				
		an electric				
		current in a				
		magnetic field.				
		Calculating the				
		torque in an				
		electric current				
		loop				
		Explains the				
		concepts of				
		Ampere's Law				
		and Biot				
		Savart's Law,				
		as well				
		Calculate the				
		magnitude of				
		the magnetic				
		flux in an area.				
		6.Calculating the				
		induced emf in				
		a conductor				
		and in a coil				
		using Faraday's				
		Law and Lenz's				
		Law and Lenz's				
		7.Explain the				
		concept of				
		inductance.				
		8.Calculating the				
		self-inductance				
		of the coil.				
		9.Calculate				
		magnetic				
		energy and				
		density.				
		10.Calculate the				
		mutual				
		inductance of				
		two coils				
8	Meetings 1 to 7	Meetings 1 to 7	Written Test			0%
			 3 X 50			U70
9	Explain Current	1.Explain the	 Lectures,			0%
	Resistance and Electric	various	discussions,			
	Voltage	phenomena	exercises			
		contained in the	3 X 50			
		RC circuit				
		2.Explain the				
		difference				
		between				
		electrical				
		energy and				
		electrical				
		power.				

10	Explain and understand Alternating Current	1.Explain the various behaviors of resistors, capacitors and inductors in alternating electrical circuits. 2.Explain and use phasor diagrams to calculate impedance 3.Calculating the resonant	Lectures, discussions, questions and answers, exercises and assignments 3 X 50		0%
		frequency in an alternating electrical circuit. 4.Calculating power in an alternating electrical circuit			
11	Explain and use induced magnetic fields. Explain the origin of displacement currents. Explain the meaning of Maxwell's equations and use them.	1.Mention the use of induced magnetic fields 2Calculating shift current 3.Explain Maxwell's equations	Lectures, discussions, questions and answers, and 3 X 50 exercises		0%
12	Explain, understand the process of the birth of electromagnetic waves from Maxwell's equations. Explain the spectrum of electromagnetic waves. Explain the transmission path of electromagnetic waves. Explain electromagnetic waveguides. Explain electromagnetic waveguides. Explain electromagnetic wave radiation. Explain and how to calculate the Poynting Vector	1. Write down electromagnetic waves from Maxwell's Equations. 2. Mention the electromagnetic wave spectrum. 3. Explain the transmission path of electromagnetic waves. 4. Explain electromagnetic waveguides. 5. Explain electromagnetic wave radiation. 6. calculating Poynting Vectors.	Lectures, discussions, questions and answers, and 3 X 50 exercises		0%
13	Explain, understand the process of the birth of electromagnetic waves from Maxwell's equations. Explain the spectrum of electromagnetic waves. Explain the transmission path of electromagnetic waves. Explain electromagnetic waveguides. Explain electromagnetic waveguides. Explain electromagnetic wave radiation. Explain and how to calculate the Poynting Vector	1.Write down electromagnetic waves from Maxwell's Equations. 2.Mention the electromagnetic wave spectrum. 3.Explain the transmission path of electromagnetic waves. 4.Explain electromagnetic waveguides. 5.Explain electromagnetic wave radiation. 6.calculating Poynting Vectors.	Lectures, discussions, questions and answers, and 3 X 50 exercises		0%

14	1. Understand the	1.Explain and	Lectures,		0%
	nronagation properties of		Lectures,		070
	propagation properties of light 2. Understand	calculate the	discussions,		
	reflection and refraction	energy and	questions		
	3. Understand	momentum of	and		
			answers,		
	interference 4.	light.	and		
	Understand diffraction,	2.Explain and			
	grating and spectrum 5. Understand Polarization	use the Doppler	3 X 50		
	Understand Polarization		exercises		
		Effect.			
		3.Explain and			
		use the Laws of			
		Reflection and			
		Refraction			
		4.Explain the			
		relationship			
		•			
		between			
		Huygen's			
		Principle and			
		the Law of			
		Reflection and			
		Reaction.			
		5.Explains the			
			1		
		event of total			
		internal			
		reflection.	1		
		6.Explain and			
			1		
		use Fermat's			
		principle in			
		reflection and			
		refraction			
		events			
		7.Explain the			
		concepts of			
		geometric			
		optics and			
		wave optics.			
		8.Explain the			
		interaction			
		between			
		spherical waves			
		and plane			
		mirrors and			
		spherical			
		mirrors.			
		Explain the			
		properties of			
		thin lenses.			
		10.Explain the			
			1		
		principle of			
		Young's			
		Experiment and	1		
		its benefits.			
		11.Explain the	1		
		definition of	1		
		coherence.			
		12.Explains			
			1		
		interference	1		
		events in thin			
		layers.	1		
		13.Explain the	1		
		working			
		principle of the	1		
		Michelson	1		
		interferometer.			
		14.Explain and	1		
		use the concept	1		
		of diffraction on	1		
		gratings.	1		
		15.Explain and	1		
		calculate the			
		resolving power			
			1		
		of a lattice.			
	·				

16	1. Understand the propagation properties of light 2. Understand reflection and refraction 3. Understand interference 4. Understand diffraction, grating and spectrum 5. Understand Polarization	1.Explain and calculate the energy and momentum of light. 2.Explain and use the Doppler Effect. 3.Explain and use the Laws of Reflection and Refraction 4.Explain the relationship between Huygen's Principle and the Law of Reflection and Reaction. 5.Explains the event of total internal reflection. 6.Explain and use Fermat's principle in reflection and refraction events 7.Explain the concepts of geometric optics and wave optics. 8.Explain the interaction between spherical waves and plane mirrors and spherical mirrors. 9.Explain the properties of thin lenses. 10.Explain the principle of Young's Experiment and its benefits. 11.Explain the definition of coherence. 12.Explains interference events in thin layers. 13.Explain the working principle of the Michelson interferometer. 14.Explain and use the concept of diffraction on gratings. 15.Explain and use the concept of diffraction on gratings.	Lectures, discussions, questions and answers, and 3 X 50 exercises		0%
					U70

Evaluation Percentage Recap: Project Based Learning

	~ ~	idadioni i ore	ontago reco
	No	Evaluation	Percentage
ı			00%

Notes

- Learning Outcomes of Study Program Graduates (PLO Study Program) are the abilities possessed by each Study Program graduate which are the internalization of attitudes, mastery of knowledge and skills according to the level of their study program obtained through the learning process.
- The PLO imposed on courses are several learning outcomes of study program graduates (CPL-Study Program)
 which are used for the formation/development of a course consisting of aspects of attitude, general skills, special skills
 and knowledge.
- 3. **Program Objectives (PO)** are abilities that are specifically described from the PLO assigned to a course, and are specific to the study material or learning materials for that course.
- Subject Sub-PO (Sub-PO) is a capability that is specifically described from the PO that can be measured or
 observed and is the final ability that is planned at each learning stage, and is specific to the learning material of the
 course.
- Indicators for assessing ability in the process and student learning outcomes are specific and measurable statements that identify the ability or performance of student learning outcomes accompanied by evidence.
- 6. **Assessment Criteria** are benchmarks used as a measure or measure of learning achievement in assessments based on predetermined indicators. Assessment criteria are guidelines for assessors so that assessments are consistent and unbiased. Criteria can be quantitative or qualitative.
- 7. Forms of assessment: test and non-test.
- 8. Forms of learning: Lecture, Response, Tutorial, Seminar or equivalent, Practicum, Studio Practice, Workshop Practice, Field Practice, Research, Community Service and/or other equivalent forms of learning.
- Learning Methods: Small Group Discussion, Role-Play & Simulation, Discovery Learning, Self-Directed Learning, Cooperative Learning, Collaborative Learning, Contextual Learning, Project Based Learning, and other equivalent methods.
- 10. **Learning materials** are details or descriptions of study materials which can be presented in the form of several main points and sub-topics.
- 11. The assessment weight is the percentage of assessment of each sub-PO achievement whose size is proportional to the level of difficulty of achieving that sub-PO, and the total is 100%.
- 12. TM=Face to face, PT=Structured assignments, BM=Independent study.