

Universitas Negeri Surabaya Vocational Faculty, D4 Electrical Engineering Study Program

Document Code

				SEME	ESTER L	EARNIN	IG F	PLAN				
Courses				CODE		Course Fan	se Family		Weig	nt	SEMESTER	Compilation Date
DC Elect	DC Electrical Circuits			20401022981	.0			T=0 P	=0 E	CTS=0	1	July 17, 2024
AUTHOR	RIZAT	ION		SP Develope	r	-		e Cluste linator	r		Study Progra Coordinator	am
										Mahendra Widyartono, S.T., M.T.		
Learning model	I	Project Based	Learnin	g								
Program Learning		PLO study pro	ogram 1	that is charg	ed to the cour	se						
Outcom		Program Objectives (PO)										
(PLO)		PLO-PO Matrix										
		P.O										
		PO Matrix at the end of each learning stage (Sub-PO)										
			P.(.0			We	Week				
				1 2	3 4 5	6 7	89	10	11	12	13 14	15 16
Short Course Descript	tion	Understanding a electrical circuits (6) resistance ne	s, (3) dir	ect current ele	ectric power (4) i	mesh current a	nalysis,	(mesh ci	basic urrent	laws of analysis	electricity and s), (5) node vo	basic theory of Itage analysis,
Referen	ces	Main :										
		 Floyd, 2 William, Jakarta Ramdha dll 	2007. Ele Jack, Erlangg	ectric Circuits & Steven. 20 ja.	troductory Circu Fundamentals 1 005. Engineering Rangkaian Listri	3 7th ed. New g Circuit Analy	Jersey; /sis Six	Pearson	Prent	ce Hall		it Kastawan).
		Supporters:										
Support lecturer		Reza Rahmadia	n, S.ST	., M.EngSc.								
Week-	Fin eac sta	nal abilities of ch learning age		Eval	uation		Student Assignments, materia			Learning materials [References	Assessment Weight (%)	
	(Su	Ъ-РО)	Ir	ndicator	Criteria & F		line(ˈine)	Onlin	e (or	line)]	
(1)		(2)		(3)	(4)		5)		(6)		(7)	(8)

1	Describe, give examples and apply atomic theory, basic knowledge concepts and circuit parameters	 Explain about atomic theory, Explain the meaning of electron flow Explain the meaning of electric current Explain the meaning of electric potential Explain the meaning of voltage/voltage difference Explain the meaning of electrical units Explain the meaning of electrical units Explain the meaning of electric charge Explain the meaning of capacitance Calculating conductor resistance 	Criteria: The correct answer gets a score of 100	Discussion, providing examples of application and assignments in the 2 X 50 theory class		0%
		10.Calculate changes in resistance due to changes in temperature				
2	Describe, give examples and apply atomic theory, basic knowledge concepts and circuit parameters	 Explain about atomic theory, Explain the meaning of electron flow Explain the meaning of electric current Explain the meaning of electric potential Explain the meaning of voltage/voltage difference Explain the meaning of electrical units Explain the meaning of electric charge Explain the meaning of electric charge Explain the meaning of electric charge Explain the meaning of capacitance Calculating conductor resistance Calculate changes in resistance due to changes in temperature 	Criteria: The correct answer gets a score of 100	Discussion, providing examples of application and assignments in the 2 X 50 theory class		0%

3	Understand and apply the basic laws of electricity and basic theory of electrical circuits	 Explain direct current (DC) generation Explain the types of direct current Explain Faraday's law Explain Kirchhoff's law 19s Explain Ohm's law Explain Lenz's law Explain Lenz's law Calculate the branch voltage across some resistance Calculate the equivalent resistance in a series circuit. Calculating equivalent resistance in parallel circuits. Calculating the branch current in a two-branch parallel circuit. Calculating equivalent resistance in series-parallel (mixed) circuits Calculate the magnitude of the conductance G 	Criteria: test score: number of correct answers x 100, divided by the number of test items	Discussion, giving examples of R series problems and assignments in theory class, 2 X 50			0%
---	---	---	---	--	--	--	----

4	Understand and	1.Explain direct	Criteria:	Discussion,		0%
4	Understand and apply the basic laws of electricity and basic theory of electrical circuits	 Explain direct current (DC) generation Explain the types of direct current Explain Faraday's law Explain Kirchhoff's law 19s Explain Ohm's law Explain Lenz's law Explain Lenz's law Calculate the branch voltage across some resistance Calculate the equivalent resistance in a series circuit. Calculating equivalent resistance in parallel circuits. Calculating the branch current in a two-branch parallel circuit. Calculating equivalent resistance in parallel circuit. Calculating the branch current in a two-branch parallel circuit. Calculating equivalent resistance in series-parallel (mixed) circuits 	Criteria: test score: number of correct answers x 100, divided by the number of test items	Discussion, giving examples of R series problems and assignments in theory class, 2 X 50		0%
		magnitude of the conductance				
		G				
5	Can analyze and evaluate the concept of direct current electric power, and practice in the laboratory	1. Calculate the amount of DC2 electrical power. calculate DC3 electrical work. calculate DC4 electric heat. Skilled in carrying out practical work in the laboratory to validate electrical power.	Criteria: The test score is obtained by: number of correct answers x 100 then divided by the number of test items	Discussion, providing examples of electrical power problems and assignments in theory classes. 2 X 50		0%
6	Able to use the mesh current method to solve problems in complex direct current circuits	1. Calculate the number of mesh currents, 2. Determine the direction of the mesh current, 3. Write the mesh current equation 4. Calculate the magnitude of each mesh current using elimination 5. Calculate the magnitude of each mesh current using a matrix.6. Calculate the amount of current, voltage or resistance in the mesh using driving point resistance7. Calculate the amount of current, voltage, or resistance in the mesh using transfer resistance	Criteria: The test score is obtained by: number of correct answers x 100 then divided by the number of test items	Discussion, providing examples of solving complex electrical circuits using the mesh current method and assignments in theory classes. 2 X 50		0%

7	Able to use the mesh current method to solve problems in complex direct current circuits	1. Calculate the number of mesh currents, 2. Determine the direction of the mesh current, 3. Write the mesh current equation 4. Calculate the magnitude of each mesh current using elimination 5. Calculate the magnitude of each mesh current using a matrix.6. Calculate the amount of current, voltage or resistance in the mesh using driving point resistance7. Calculate the amount of current, voltage, or resistance in the mesh using transfer resistance	Criteria: The test score is obtained by: number of correct answers x 100 then divided by the number of test items	Discussion, providing examples of solving complex electrical circuits using the mesh current method and assignments in theory classes. 2 X 50		0%
8	UTS			2 X 50		0%
9	Able to use the Branch Current analysis method to solve problems in direct current circuits	 Determines the number of branching currents Determine the number of equations 	Criteria: The test score is obtained by: number of correct answers x 100 then divided by the number of test items	Discussion, providing examples of solving electrical circuits using the Branch Current analysis method and assignments in theory classes. 2 X 50		0%
10	Able to use Node analysis methods to solve problems in direct current circuits	 Defines the reference node as ground/zero potential Determines node voltage Determines the direction of current leaving the node Determine the number of equations 	Criteria: The test score is obtained by: number of correct answers x 100 then divided by the number of test items	Discussion, providing examples of solving electrical circuits using Node analysis methods and assignments in theory classes. 2 X 50		0%
11	Able to use Node analysis methods to solve problems in direct current circuits	 Defines the reference node as ground/zero potential Determines node voltage Determines the direction of current leaving the node Determine the number of equations 	Criteria: The test score is obtained by: number of correct answers x 100 then divided by the number of test items	Discussion, providing examples of solving electrical circuits using Node analysis methods and assignments in theory classes. 2 X 50		0%
12	Able to use the Superposition and Substitution theorem to solve problems in direct current circuits	 Determine the equivalent circuit by replacing the current source with an internal resistance Determine the equivalent circuit by replacing the voltage source with an internal resistance 	Criteria: The test score is obtained by: number of correct answers x 100 then divided by the number of test items	Discussion, providing examples of solving electrical circuits using the Superposition and Substitution theorem as well as assignments in theory class. 2 X 50		0%

13	Able to use Thevenin's theorem to solve problems in direct current circuits	 Determine the short circuit current value Determine the replacement resistance value 	Criteria: The test score is obtained by: number of correct answers x 100 then divided by the number of test items	Discussion, providing examples of solving electrical circuits using Thevenin's theorem as well as assignments in theory class. 2 X 50		0%
14	Able to use Norton's theorem to solve problems in direct current circuits	 Determine the terminal point Determines the current value at the terminal Determine the replacement resistance value 	Criteria: The test score is obtained by: number of correct answers x 100 then divided by the number of test items	Discussion, providing examples of solving electrical circuits using Norton's theorem as well as assignments in theory class. 2 X 50		0%
15	Able to use Millman's theorem and Maximum Power Transfer to solve problems in direct current circuits	 Determine the number of current sources Determines the maximum power value 	Criteria: The test score is obtained by: number of correct answers x 100 then divided by the number of test items	Discussion, providing examples of solving electrical circuits using Millman's theorem and Maximum Power Transfer as well as assignments in theory class. 2 X 50		0%
16	UAS			2 X 50		0%

Evaluation Percentage Recap: Project Based Learning

No Evaluation Percentage

0%

Notes

- 1. Learning Outcomes of Study Program Graduates (PLO Study Program) are the abilities possessed by each Study Program graduate which are the internalization of attitudes, mastery of knowledge and skills according to the level of their study program obtained through the learning process.
- The PLO imposed on courses are several learning outcomes of study program graduates (CPL-Study Program) which are used for the formation/development of a course consisting of aspects of attitude, general skills, special skills and knowledge.
- 3. **Program Objectives (PO)** are abilities that are specifically described from the PLO assigned to a course, and are specific to the study material or learning materials for that course.
- 4. **Subject Sub-PO (Sub-PO)** is a capability that is specifically described from the PO that can be measured or observed and is the final ability that is planned at each learning stage, and is specific to the learning material of the course.
- 5. Indicators for assessing abilities in the process and student learning outcomes are specific and measurable statements that identify the abilities or performance of student learning outcomes accompanied by evidence.
- 6. Assessment Criteria are benchmarks used as a measure or measure of learning achievement in assessments based on predetermined indicators. Assessment criteria are guidelines for assessors so that assessments are consistent and unbiased. Criteria can be quantitative or qualitative.
- 7. Forms of assessment: test and non-test.
- 8. Forms of learning: Lecture, Response, Tutorial, Seminar or equivalent, Practicum, Studio Practice, Workshop Practice, Field Practice, Research, Community Service and/or other equivalent forms of learning.
- 9. Learning Methods: Small Group Discussion, Role-Play & Simulation, Discovery Learning, Self-Directed Learning, Cooperative Learning, Contextual Learning, Project Based Learning, and other equivalent methods.
- 10. Learning materials are details or descriptions of study materials which can be presented in the form of several main points and sub-topics.
- 11. The assessment weight is the percentage of assessment of each sub-PO achievement whose size is proportional to the level of difficulty of achieving that sub-PO, and the total is 100%.
- 12. TM=Face to face, PT=Structured assignments, BM=Independent study.