

Universitas Negeri Surabaya Faculty of Mathematics and Natural Sciences Undergraduate Physics Study Program

Docume

	SEMESTER LEARNING PLAN																			
Courses				CODE					c	Course Fami	ly			Cree	dit Weight			SEMESTER		ompila ite
Thermodynamics			4520103	3212				c	Compulsory S	Study Proc	ram Subjec	ts		T=3	P=0	ECTS=4.77	3		igust 2	
AUTHOR	-			SP Deve					I		, ,		Course Cl	uster Coo	ordinator		I	Study Progra		-
				Tim Pen									Dr. Frida U	lfah Erma	wati, M.Sc.				Munasir, S	
Learning model		Case Studies		1									1					I.		
Program	PLO study program which is charged to the course																			
Outcome	es	PLO-9	Able to work as an individual or team effectively, have entrepreneurial skills, and care about environmental issues.																	
(PLO)	-	PLO-11	Design and conduct experiments in physics learning by applying scientific methods																	
	1	Program Objec																		
	_	PO - 1	Students are able to master knowledge about the concepts and processes of the laws of thermodynamics and equations of state Students are able to analyze and formulate thermodynamic systems in the form of the 1st and 2nd Thermodynamic Equations with the help of mathematics, Entropy of thermodynamic systems																	
		PO - 2	Students a	ire able to	o analyze a	ind formula	ate thermod	lynamic sys	stems in the	e form of the	1st and 2r	nd Thermod	ynamic Equa	tions with	the help of	mathemat	tics, Entropy o	of thermodynam	nic system	s
		PO - 3	Students a	ire able to	o design ar	nd carry ou	it thermody	namics pra	ctical activit	ties with the t	opics: (1)	Adiabatic g	as law, (2) Id	eal gas, (3	3) Thermal	Expansion	, and (4) Hea	t engine		
		PO - 4	Students a	ire able to	communi	cate the re	esults of pra	cticum activ	vities and c	ase study re	sults in ve	rbal and wri	tten form							
		PO - 5	Students a	ire able to	o complete	the case s	studies give	n well, both	n individuall	y and in tean	ns, analyz	ing the work	king concepts	that occu	ır in thermo	dynamic s	ystems in eve	eryday life		
	1	PLO-PO Matrix																		
			F	P.O	PLC	D-9	PLO-11													
			Р	0-1																
			Р	0-2																
			Р	0-3																
			Р	0-4																
				0-5																
			F	0-5																
	-	DO Matrix at the and of each learning stage (Sub DO)																		
	-	PO Matrix at the end of each learning stage (Sub-PO)																		
			P	.0	Week															
					1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
			PO-1																	
			PO-2																	
			PO-3																	
			PO-4																	
			PO-5																	
							1					1								
Short Course Descripti	ion	This Thermodyna reversible and irrr their applications of the 2nd Law o vinegar solution a following 4 select	in everyday f Thermody and baking	/ life. Isoti namics, a powder se	hermal, isc and its app o that it ca	ochoric, iso plication in n inflate th	everyday e balloon,	idiabatic pro life, in the f (3) the work	ocesses. Ca orm of case king princip	arnot cycle II e studies, su le of a rice c	1 an ideal ich as: (1) ooker, and	das system	. Entropy of a	a thermod	vnamic svs	tem. Entha	alov. Gibbs fu	nction, and Heli	mholtz tun	ction. L
Reference	es	Main :																		-
			Bandung, rs and G L S	Institut Te Salinger, '	eknologi Ba Thermodyr	andung (IT namics, Ki	B). netic Theor	y and Statis	stical Therm	nodynamics.	Addison V	Vesley. ISB	N-13: 978-02				-	1986. Kalor da	n termodir	namika
	h	Supporters:																		
Darmawan B. 1990. Termodinamika. Jurusan Fisika FMIPA-ITB thtps://byius.com/physics/thermodynamics/ thtps://www.livescience.com/50776-thermodynamics.html thtps://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook http://hyperphysics.phy-astr.gsu.edu/hbase/heacon.html							book_Maps/S	Supplemer	ntal_Module	s_(Physical_	and_Theo	retical_Che	emistry)/Th	nermodynamio	cs/The_Four_La	aws_of_Th	iermod			
Supporti lecturer	5	Dr. Frida Ulfah Er Setyo Admoko, S Lydia Rohmawati Dr. Eng. Evi Suae Dr. Fitriana, S.Si.	.Pd., M.Pd. , S.Si., M.S	i.														Γ		_
Week-	Final each stage (Sub-	abilities of learning PO)				E	valuation						Lea Stud [E	lelp Learr Irning me ent Assig	thods, nments, time]			Learning m [Referer	aterials ices]	Asse Wei
		-		Indicato	r			Criteria &	Form			Offline (,		Onli	ne (<i>online</i>	e)			
(1)		(2)		(3)				(4)				(5)			(6)		(7)		

1	 Provides critical analysis of thermodynamic concepts and processes, as well as equations of state Have an attitude and sense of responsibility towards the environment by applying the concepts of thermodynamics in order to preserve the environment. 	 Able to explain macroscopic and microscopic concepts of thermodynamics well Able to understand thermal balance and the Oth Law of Thermodynamics Equation Able and have an attitude and sense of responsibility towards the environment by applying the concepts of thermodynamics in order to preserve the environment. 	Criteria: non-test Form of Assessment : Participatory Activities	Learning Form: Offline Learning Method: Lecture, discussion, Question and answer. 3 x 50 minutes	Material: Temperature and the Zeroth Law of Thermodynamics References: Mark W. Zemansky and Richard H. Dittman. 1982. Heat and Thermodynamics, Sixth Edition, McGraw- Hill, Inc. Translated into Indonesian by The Houw Liong. 1986. Heat and thermodynamics, sixth edition, Bandung, Bandung Institute of Technology (TB). Material: Temperature and the Zeroth Law of Thermodynamics. Reference: Darmawan B. 1990. Thermodynamics. Reference: Darmawan B. 1990. Thermodynamics. Generature Concept • Thermometers and Temperature Goas Temperature Scales Library: http://hyperphysics.phy-	
2	 Provides critical analysis of thermodynamic concepts and processes, as well as equations of state Have an attitude and sense of responsibility towards the environment by applying the concepts of thermodynamics in order to preserve the environment. 	 Able to explain macroscopic and microscopic concepts of thermodynamics well Able to understand thermal balance and the Oth Law of Thermodynamics Equation Have an attitude and sense of responsibility towards the environment by applying the concepts of thermodynamics in order to preserve the environment. 	Criteria: non-test Form of Assessment : Participatory Activities	Learning Form: Offline Learning Method: Lecture, discussion, Question and answer. 3 x 50 minutes	astr.gsu.edu/ Material: Temperature and the Zeroth Law of Thermodynamics References: Mark W. Zemansky and Richard H. H. Oittman. 1982. Heat and Thermodynamics, Sixth Edition, McGraw- Hill, Inc. Translated into Indonesian by The How Liong. 1986. Heat and thermodynamics, sixth edition, Bandung, Bandung, Bandung, Issi Bandung Institute of Technology (ITB). Material: Temperature and the Zeroth Law of Thermodynamics, Reference: Darmawan B. 1990. Thermodynamics, FMIPA-ITB Material: Temperature and the Zeroth Law of Thermodynamics, FMIPA-ITB Material: Temperature Comparison of Several Thermometers - Ideal Gas Temperature Several Thermometer Scales Library: http://hyperphysics.phy- astr.gsu.edu/	
3	 Analyzing processes in thermodynamics, the 1st Law of Thermodynamics and its application in everyday life 2.Mastering thermodynamic processes (quasi static, reversible and cyclical 3.Mastering the relationship between internal energy, heat and work in ideal gas systems, isolated systems, isolated systems, closed systems, and open systems 4.Have an attitude and sense of responsibility towards the environment by applying the concepts of thermodynamics in order to preserve the environment. 	 Explaining Thermodynamic Equilibrium Explaining the Equation of State Explaining Mathematical Theorems Explaining Mathematical Theorems Explaining Stretched Wire Explaining Stretched Wire Explaining Thin Membrane Surfaces T.Explaining Dielectric Layers Explaining Paramagnetic Rods Explaining Intensive and Extensive Coordinates 	Criteria: non-test Form of Assessment : Participatory Activities, Portfolio Assessment	Learning Form: Lecture Learning Method: Presentation, discussion and question and answer. Student Assignments: Giving individual and/or group assignments of 3 x 50 minutes	Material: Several Simple Thermodynamic Systems Bibliography: Mark W. Zemansky and Richard H. Dittman. 1982. Heat and Thermodynamics, Sixth Edition, McGraw- Hill, Inc. Translated into Indonesian by The Houw Liong. 1986. Heat and thermodynamics, sixth edition, Bandung, Bandung Institute of Technology (ITB). Material: Several Simple Thermodynamic Systems Reference: Darmawan B. 1990. Thermodynamics. Department of Physics, FMIPA-ITB	

4	Analyzing processes in thermodynamics, the 1st Law of Thermodynamics and its application in everyday life	1.Explaining Thermodynamic Equilibrium 2.Explaining the Equation of State 3.Explain the Hydrostatic System 4.Explaining Mathematical Theorems 5.Explaining Thin Membrane Surfaces 7.Explaining Thin Membrane Surfaces 7.Explaining Dielectric Layers 9.Explaining Dielectric Layers 10.Explaining Intensive and Extensive Coordinates	Criteria: non-test Form of Assessment : Participatory Activities, Portfolio Assessment	Learning Form: Lecture Learning Method: Presentation, discussion and question and answer. Student Assignments: Giving individual and/or group assignments of 3 x 50 minutes	Material: Several Simple Thermodynamic Systems Bibliography: Mark W. Zemansky and Richard H. Ditman. 1982. Heat and Thermodynamics, Sixth Edition, McGraw- Hill, Inc. Translated into Indonesian by The Hourw Liong. 1986. Heat and thermodynamics, sixth edition, Bandung, Bandung Institute of Technology (ITB). Material: Several Simple Thermodynamic Systems Reference: Darmawan B. 1990. Thermodynamics. Department of Physics, FMIPA-ITB
5	Analyzing processes in thermodynamics, the 1st Law of Thermodynamics and its application in everyday life	 Calculating J p dV for Quasistatic Processes Explain the work of changing wire length, changing film surface area, charge transfer in electrochemical cells, changing total polarization in dielectric solids, changing total polarization paramagnetic solids. Explaining Work in General Explain Alloy Systems 	Criteria: Quantitative Form of Assessment : Participatory Activities, Practical Assessment	Learning Form: Lecture Learning Method: Question and answer, discussion, case method, and presentation Student Assignments: Giving individual and group assignments [3 x 50 Minutes]	Material: work Bibliography: Mark W. Zemansky and Richard H. Dittman. 1982. Heat and Thermodynamics, Sixth Edition, McGraw- Hill, Inc. Translated into Indonesian by The Houry Liong. 1986. Heat and thermodynamics, sixth edition, Bandung, Bandung, Institute of Technology (TB). Material: work Reference: Darmawan B. 1990. Thermodynamics. Department of Physics, FMIPA-ITB
6	Distinguishing important processes in thermodynamics in ideal gases through PV diagrams, as well as discussing Heat engines, Carnot cycles	 Explain Work and Heat 2.Explaining Adiabatic Work 3.Explaining the Function of Internal Energy Explain the Mathematical Formulation of the First Law of Thermodynamics Explain the concept of heat Explaining the Differential Form of the First Law of Thermodynamics Explaining Heat Capacity and Its Measurement Explaining Specific Heat of Water: Calories 	Criteria: Quantitative Form of Assessment : Participatory Activities, Practical Assessment	Learning Form: Lecture Learning Method: Question and answer, discussion, case method, and presentation Student Assignments: Giving individual and group assignments [3 x 50 Minutes]	Material: Heat and the First Law of Thermodynamics References: Mark W. Zemansky and Richard H. Dittman. 1982. Heat and Thermodynamics, Sixth Edition, McGraw- Hill, Inc. Translated into Indonesian by The Houw Liong. 1986. Heat and thermodynamics, sixth edition, Bandung, Bandung Institute of Technology (ITB). Material: Heat and the First Law of Thermodynamics Reference: Darmawan 8. 1990. Thermodynamics, Department of Physics, FMIPA-ITB
7	Distinguishing important processes in thermodynamics through PV diagrams, as well as discussing Heat engines, Carnot cycles	1.Explaining the Hydrostatic System Equations 2.Explain the Quasistatic Flow of Heat 3.Explaining Heat Reservoirs 4.Explain Conduction Heat 5.Explain Thermal Conductivity and Its Measurement 6.Explain Convection Heat 7.Explaining Thermal Radiation Reat 9.Explaining Stefan- Boltzmann's Law	Criteria: Quantitative Form of Assessment : Participatory Activities, Practical Assessment	Learning Form: Lecture Learning Method: Question and answer, discussion, case method, and presentation Student Assignments: Giving individual and group assignments [3 x 50 Minutes]	Material: Heat and the First Law of Thermodynamics References: Mark W. Zemansky and Richard H. Dittman. 1982. Heat and Thermodynamics, Sixth Editon, McGraw- Hill, Inc. Translated into Indonesian by The Houw Liong. 1986. Heat and thermodynamics, sixth edition, Bandung, Bandung Institute of Technology (TB). Material: Heat and the First Law of Thermodynamics Reference: Darmawan B. 1990. Thermodynamics, Department of Physics, FMIPA-ITB

8	1.UTS 2.Able to solve questions related to meetings 1 to 7	 Students can explain the zeroth law of thermodynamics, the 1st law of thermodynamics, quasi-static processes, adiabatic processes, isobars, and isothermal 2.Students can analyze and calculate the value of work in a cycle Students can analyze and calculate the expansion and compressibility of water 	Criteria: Quantitative Form of Assessment : Test	Written Test 2 x 100 minutes	Material: Temperature and the Zeroth Law of Thermodynamics; Some Simple Thermodynamic Systems; Work; Some Simple Thermodynamic Systems Bibliography: Mark W. Zemansky and Richard H. Dittman. 1982. Heat and Thermodynamics, Sixth Edition, McGraw- Hill, Inc: Translated into Indonesian by The Houw Lion; 1986. Heat and thermodynamics, sixth edition, Bandung, Bandung Institute of Technology (ITB). Material: Temperature and the Zeroth Law of Thermodynamics Systems; Work; Some Simple Thermodynamic Systems; B. 1990. Thermodynamics, Epapartment of Physics, FMIPA-ITB Material: Temperature and the Zeroth Law of Thermodynamics
					Some Simple Thermodynamic Systems: Work: Some Simple Thermodynamic Systems Bibliography: Yunus A. Cengel and Michael Boles. 1994. Thermodynamics An Engineering Approach, Second Edition, McGraw-Hill, Inc
9	After attending a thermodynamics lecture on ideal gas material, students can state the characteristics of an ideal gas with mathematical equations, with a minimum 80% correct assessment at the end of the lecture.	Explain the Equation of State for an Ideal Gas Z.Explaining the Internal Energy of Real Gases S.Explaining Ideal Gases 4.Explaining Experiments to Determine Heat Capacity 5.Explaining Quasistatic Adiabatic Processes	Criteria: Quantitative Form of Assessment : Participatory Activities, Practical Assessment	Learning Form: Lecture Learning Method: Question and answer, discussion, case method, and presentation Student Assignments: Giving individual and group assignments [3 x 50 Minutes]	Material: Ideal Gas Bibliography: Mark W. Zemansky and Richard H. Dittman. 1982. Heat and Thermodynamics, Sixth Edition, McGraw- Hill, Inc. Translated Into Indonesian by The Hour Liong, 1986. Heat and thermodynamics, sixth edition, Bandung, Bandung Institute of Technology (ITB).
					Reference: Darmawan B. 1990. Thermodynamics. Department of Physics, FMIPA-ITB
10	After attending a thermodynamics lecture on ideal gas material, students can state the characteristics of an ideal gas with mathematical equations, with a minimum 80% correct assessment at the end of the lecture.	1.Explaining y Measurements Using the Ruchhardt Method 2.Explaining Longitudinal Wave Speed 3.Explaining Microscopic View 4.Explaining the Kinetic Theory of Ideal Gases	Criteria: Quantitative Form of Assessment : Participatory Activities, Practical Assessment	Learning Form: Lecture Learning Method: Question and answer, discussion, case method, and presentation Student Assignments: Giving individual and group assignments [3 x 50 Minutes]	Material: Ideal Gas Bibliography: Mark W. Zemansky and Richard H. Dittman. 1982. Heat and Thermodynamics, Sixth Edition, McGraw- Hill, Inc. Translated into Indonesian by The Houw Liong. 1986. Heat and thermodynamics, sixth edition, Bandung, Bandung Institute of Technology (ITB).
					Material: Ideal Gas Reference: Darmawan B. 1990. Thermodynamics. Department of Physics, FMIPA-ITB
11	After following the work conversion material from various machines in thermodynamics, students can design practical activities with assessments in the form of quizzes/practicum reports with a success rate of 80	1.Explain the conversion of work into heat and vice versa 2.Explaining Gasoline Engines, Diesel Engines, Steam Engines, Stirling Engines 3.Explaining Heat Engines; Kelvin-Planck Statement of the Second Law of Thermodynamics 4.Explaining Refrigerators; Clausius Statement of the Second Law of Thermodynamics	Criteria: Quantitative Form of Assessment : Participatory Activities, Practical Assessment	Learning Form: Lecture Learning Method: Question and answer, discussion, case method, and presentation Student Assignments: Giving individual and group assignments [3 x 50 Minutes]	Material: Second Law of Thermodynamics References : Mark W. Zemansky and Richard H. Dittman. 1982. Heat and Thermodynamics, Sixth Edition, McGraw- Hill, Inc. Translated into Indonesian by The Houw Liong. 1986. Heat and thermodynamics, sixth edition, Bandung, Bandung Institute of Technology (ITB).
		5.Explaining the Equivalence of the Kelvin- Planck and Clausius Statements			Material: Second Law of Thermodynamics Reference: Darmawan B. 1990. Thermodynamics. Department of Physics, FMIPA-ITB

12	After following the work conversion material trom various machines in thermodynamics, stratus activities with assessments in thermodynamics with assessments in quizzes/practicum reports with a success rate of 80	 Explaining Reversibility and Irreversibility Explaining External and Internal Mechanical Irreversibility Explaining External and Internal Thermal Irreversibility Explaining Chemical Irreversibility Explaining Some Inverse States 	Criteria: Quantitative Form of Assessment : Participatory Activities	Learning Form: Lecture Learning Method: Question and answer, discussion, case method, and presentation Student Assignments: Giving individual and group assignments [3 x 50 Minutes]	Material: Second Law of Thermodynamics References: Mark W. Zemansky and Richard H. Dittman. 1982. Heat and Thermodynamics. Sixth Edition, McGraw- Hill, Inc. Translated into Indonesian by The Houw Liong. 1986. Heat and thermodynamics, sixth edition, Bandung, Bandung Institute of Technology (ITB). Material: Second Law of Thermodynamics Reference: Darmawan B. 1990. Thermodynamics. Department of Physics, Department of Physics,
13	Third semester students majoring in physics will be able to design and carry out practical work on the Carnot cycle and the thermodynamic temperature scale correctly, after following the presentationalis becture material with an observation level of 80% correct	 Explaining the Carnot Cycle Explaining several examples of the Carnot cycle Explain Carnot Refrigerator Explaining Carnot's and Collorary's Theorems 	Form of Assessment : Participatory Activities, Tests	Learning Form: Lecture Learning Method: Question and answer, discussion, case method, and presentation Student Assignments: Giving individual and group assignments [3 x 50 Minutes]	FMIPA-ITB Material: Carnot Cycle and Thermodynamic Temperature Scale References: Mark W. Zemansky and Richard H. Dittman. 1982. Heat and Thermodynamics, Sixth Edition, McGraw- Hill, Inc. Translated into Indonesian by The Hour Liong, 1986. Heat and thermodynamics, sixth editor, Bandung, Bandung, Institute of Technology (ITB). Material: Carnot Cycle and Thermodynamics Temperature Scale Reference: Darmawan B. 1990. Thermodynamics.
14	Third semester students majoring in physics will be able to design and carry out practical work on the thermodynamic temperature scale correctly, after following the presentation of thermodynamics lecture material with an observation level of 80% correct	1.Explain the Thermodynamic Temperature Scale 2.Explaining Absolute Zero and Carnot Efficiency 3.Explaining Ideal Gas Qualities and Thermodynamic Temperature	Criteria: Quantitative Form of Assessment : Participatory Activities, Practical Assessment	Learning Form: Lecture Learning Method: Question and answer, discussion, case method, and presentation Student Assignments: Giving individual and group assignments [3 x 50 Minutes]	Department of Physics, FMIPA-ITB Material: Carnot Cycle and Thermodynamic Temperature Scale References: Mark W. Zemansky and Richard H. Dittman. 1982. Heat and Thermodynamics, Sixth Edition, McGraw- Hill, Inc. Translated into Indonesian by The Houw Liong. 1986. Heat and thermodynamics, sixth edition, Bandung, Bandung Institute of Technology (ITB). Material: Carnot Cycle and Thermodynamics Temperature Scale Reference: Darmawan B. 1990. Thermodynamics. Department of Physics, FMIPA-ITB
15	After studying entropy material, students can formulate and formulate mathematical equations for the thermodynamic entropy system, with a minimum assessment quiz score of 80% correct	1.Explaining Entropy 2.Explaining Caratheodory's Principle 3.Explaining Tdeal Gas Entropy 4.Explaining TS Diagrams 5.Explaining Entropy and Reversibility 7.Explaining Heat and Entropy in Reversible Processes 8.Explaining Entropy and Conditions of Disequilibrium 9.Explain the Principle of Increase in Entropy 10.Explain the Principle of Increase in Entropy 10.Explaining Entropy and Disorder 11.Explaining Entropy and Disorder 12.Explaining Entropy 13.Explaining Entropy 14.Explaining Entropy 15.Explaining 14.Explaining 15.Explaining 15.Explaining	Form of Assessment : Participatory Activities, Practical Assessment	Learning Form: Lecture Learning Method: Question and answer, discussion, case method, and presentation Student Assignments: Giving individual and group assignments [3 x 50 Minutes]	Material: Entropy Bibliography: Mark W, Zemansky and Richard H. Dittman. 1982. Heat and Thermodynamics, Sixth Edition, McGraw- Hill, Inc. Translated into Indonesian by The Houw Liong. 1986. Heat and thermodynamics, sixth edition, Bandung, Bandung Institute of Technology (ITB). Material: Entropy Reader: Darmawan B. 1990. Thermodynamics. Department of Physics, FMIPA-ITB

16	Students are able to solve questions related to material from the 9th to 15th meetings	 Students can analyze and calculate questions about quasistatic adiabatics Students can analyze and calculate the heat of an adiabatic process Students can analyze and calculate machine efficiency Students can analyze questions about entropy 	Criteria: Quantitative	UAS 2 x 50 minutes	Material: Ideal Gas; Second Law of Thermodynamics; Carnot Cycle and Thermodynamics; Carnot Cycle and Thermodynamics; Ibrap Entropy : Mark W. Zemansky and Richard H. Dittman. 1982. Heat and Thermodynamics, Sixth Editon, McGraw- Hill, Inc. Translated into Indonesian by The How Liong. 1986. Heat and thermodynamics, sixth edition, Bandung, Bandung Institute of Technology (ITB). Material: Ideal Gas; Second Law of Thermodynamics; Carnot Cycle and Thermodynamics; Department of Physics; Fatipa Cycle and Thermodynamics; Department of Physics; Second Law of Thermodynamics; Carnot Cycle and Thermodynamics; Carnot Cycle and Thermod
					Cengel and Michael Boles. 1994. Thermodynamics An Engineering Approach, Second Edition, McGraw-Hill, Inc

Evaluation Percentage Recap: Case Study								
No	Evaluation	Percentage						
1.	Participatory Activities	102.5%						
2.	Portfolio Assessment	5%						
3.	Practical Assessment	57.5%						
4.	Test	30%						
		100%						

- Notes 1. Learning Outco
- Interaction of Study Program Graduates (PLO Study Program) are the abilities possessed by each Study Program graduate which are the internalization of attitudes, mastery of knowledge and skills according to the level of their study program obtained through the learning process.

 Interaction of a transmission of attitude, general skills, special skills and knowledge.

 Program Objectives (PO) are abilities that are specifically described from the PLO assigned to a course, and are specific to the study material or learning materials for that course.

 Subject Sub-PO (Sub-PO) is a capability that is specifically described from the PLO assigned to a course, and are specific to the study material or learning materials for that course.

 Indicators for assessing ability in the process and student learning outcomes are specific and measurable statements that identify the ability or performance of student learning outcomes accompanied by evidence.

 Assessment Criteria are benchmarks used as a measure or measure of learning achievement in assessments based on predetermined indicators. Assessment criteria are guidelines for assessing ability in unbiased. Criteria can be consistent and unbiased. Criteria can be consistent and unbiased.
- assessors so that assessments are consistent and unbiased. Criteria can be quantitative or qualitative. Forms of assessment: test and non-test.
- 7. 8.
- Forms of assessment: test and non-test.
 Forms of learning: Lecture, Response, Tutorial, Seminar or equivalent, Practicum, Studio Practice, Workshop Practice, Field Practice, Research, Community Service and/or other equivalent forms of learning.
 Learning Methods: Small Group Discussion, Role-Play & Simulation, Discovery Learning, Self-Directed Learning, Cooperative Learning, Collaborative Learning, Contextual Learning, Project Based Learning, and other equivalent methods.
 Learning materials are details or descriptions of study materials which can be presented in the form of several main points and sub-topics.
 The assessment weight is time percentage of assessment of each sub-PO achievement whose size is proportional to the level of difficulty of achieving that sub-PO, and the total is 100%.
 TM=Face to face, PT=Structured assignments, BM=Independent study.