

Universitas Negeri Surabaya Faculty of Mathematics and Natural Sciences Undergraduate Physics Study Program

Document Code

SEMESTER LEARNING PLAN												
Courses		CODE	Course	e Family		Cree	Credit Weight		SEMESTER	Compilation Date		
Sensor System**		452010219	7			T=2	P=0	ECTS=3.18	8 7	July 18, 2024		
AUTHORIZ	ATION	SP Develo	SP Developer		Course Cluster Coordinator			Study Program Coordinator				
								Prof. Dr. Munasir, S.Si., M.Si.				
Learning model	Project Based L	earning										
Program Learning	PLO study prog	PLO study program that is charged to the course										
Outcomes	Program Object	tives (PO)										
(PLO)	PLO-PO Matrix											
P.O.												
	PO Matrix at th	e end of each le	arning stage (Sub-F	90)								
		P.O 1	2 3 4 5	6 7	We 8 9	ek 10	11	12 1	.3 14 1	5 16		
Short Course Descriptio	e circuits and sensor interfaces, working principles of sensors (motion sensors: measurement of position, speed, acceleration, optical sensors								ptical sensors, at using lecture			
Reference	s Main :											
 Fraden, J. 2003. Handbook of Modern Sensors. Physics, Design and Applications. AIP Press. Wilson, J. S. 2005. S Technology Handbook . Elsevier. Boyes, W. 2003. Instrumentation Reference Book . Third Edition. Elsevier Science. 								2005. Sensor				
	Supporters:											
Supporting lecturer	Supporting lecturer Drs. Imam Sucahyo, M.Si. Meta Yantidewi, S.Si., M.Si.											
Week-	inal abilities of ach learning tage Sub-PO)	Eva	Evaluation		Help Learning, Learning methods, Student Assignments, [Estimated time]			Learning materials [References	Assessment Weight (%)			
		Indicator	Criteria & Form	-	(offline)	C		online)]			
(1)	(2)	(3)	(4)	(5)		(5)	(7)	(8)		

-					1	i
1	Students understand the basic principles of measuring physical quantities.	Distinguish between transducers and sensors. Explain the basic principles of measuring physical quantities (electric charge, electric potential, magnetic field, Hall effect, capacitance, resistance, inductance, thermal, and light). Classify sensors based on their measurement principles.	Criteria: Full marks are obtained if students are able to explain the basic principles of physical measurements	• Lecture • Discussion 2 X 50		0%
2	Students understand the basic principles of measuring physical quantities.	Distinguish between transducers and sensors. Explain the basic principles of measuring physical quantities (electric charge, electric potential, magnetic field, Hall effect, capacitance, resistance, inductance, thermal, and light). Classify sensors based on their measurement principles.	Criteria: Full marks are obtained if students are able to explain the basic principles of physical measurements	• Lecture • Discussion 2 X 50		0%
3	Students understand the basic principles of measuring physical quantities.	Distinguish between transducers and sensors. Explain the basic principles of measuring physical quantities (electric charge, electric potential, magnetic field, Hall effect, capacitance, resistance, inductance, thermal, and ligh). Classify sensors based on their measurement principles.	Criteria: Full marks are obtained if students are able to explain the basic principles of physical measurements	• Lecture • Discussion 2 X 50		0%
4	Students understand the characteristics of sensors	Describe the characteristics of the sensor. Explain the datasheet of a sensor.	Criteria: Full marks are obtained if students are able to explain the characteristics of the sensor from the data provided or from the datasheet	Lecture · Discussion 2 X 50		0%
5	Students have the ability to determine the appropriate signal conditioning circuit for the sensor.	• Explain the various types of signal conditioning circuits. • Design the conditioning circuit required for a sensor based on its characteristics.	Criteria: Full marks are obtained if students are able to determine a signal conditioner that suits the sensor's needs	· lecture · discussion · experiment/demonstration 2 X 50		0%

6	Students understand the working principles and application of position, level, speed, acceleration and proximity sensors.	Describe the working principle of sensors that can be used to determine position, level and proximity Design a suitable signal conditioning circuit for position, level and proximity sensors	Criteria: 1.Full marks are obtained if students are able to find the sensor transfer function 2.Full marks are obtained if students are able to explain the working principles and application of sensors	 lecture - discussion - experiment/demonstration 2 X 50 		0%
7	Students understand the working principles and application of position, level, speed, acceleration and proximity sensors.	Describe the working principle of sensors that can be used to determine position, level and proximity Design a suitable signal conditioning circuit for position, level and proximity sensors	Criteria: 1.Full marks are obtained if students are able to find the sensor transfer function 2.Full marks are obtained if students are able to explain the working principles and application of sensors	lecture · discussion · experiment/demonstration 2 X 50		0%
8	UTS			2 X 50		0%
9	Students understand the working principles and application of magnetic induction-based sensors	Explain the working principle of magnetic induction based sensors · Design a suitable signal conditioning circuit for magnetic induction based sensors	Criteria: 1.Full marks are obtained if students are able to find the sensor transfer function 2.Full marks are obtained if students are able to explain the working principles and application of sensors	lecture · discussion · experiment/demonstration 2 X 50		0%
10	Students understand the working principles and application of magnetic induction-based sensors	Explain the working principle of magnetic induction based sensors Design a suitable signal conditioning circuit for magnetic induction based sensors	Criteria: 1.Full marks are obtained if students are able to find the sensor transfer function 2.Full marks are obtained if students are able to explain the working principles and application of sensors	lecture · discussion · experiment/demonstration 2 X 50		0%
11	Students understand the working principles and application of thermal sensors	Explain the working principle of a thermal sensor Design a suitable signal conditioning circuit for a thermal sensor	Criteria: 1.Full marks are obtained if students are able to find the sensor transfer function 2.Full marks are obtained if students are able to explain the working principles and application of sensors	· lecture · discussion · experiment/demonstration 2 X 50		0%

12	Students understand the working principles and application of thermal sensors	• Explain the working principle of a thermal sensor • Design a suitable signal conditioning circuit for a thermal sensor	Criteria: 1.Full marks are obtained if students are able to find the sensor transfer function 2.Full marks are obtained if students are able to explain the working principles and application of sensors	lecture · discussion · experiment/demonstration 2 X 50		0%
13	Students understand the working principles and application of optical sensors	Explain the working principle of a light sensor Design a suitable signal conditioning circuit for an optical sensor	Criteria: 1.Full marks are obtained if students are able to find the sensor transfer function 2.Full marks are obtained if students are able to explain the working principles and application of sensors	 lecture · discussion · experiment/demonstration 2 X 50 		0%
14	Students understand the working principles and application of optical sensors	• Explain the working principle of a light sensor • Design a suitable signal conditioning circuit for an optical sensor	Criteria: 1.Full marks are obtained if students are able to find the sensor transfer function 2.Full marks are obtained if students are able to explain the working principles and application of sensors	 lecture · discussion · experiment/demonstration 2 X 50 		0%
15	Students understand the working principles and application of pressure and force sensors	explain the working principle of pressure and force sensors · Design a suitable signal conditioning circuit for pressure and force sensors	Criteria: 1.Full marks are obtained if students are able to find the sensor transfer function 2.Full marks are obtained if students are able to explain the working principles and application of sensors	· lecture · discussion · experiment/demonstration 2 X 50		0%
16						0%

 Evaluation Percentage Recap: Project Based Learning

 No
 Evaluation

 Percentage

 0%

Notes

- 1. Learning Outcomes of Study Program Graduates (PLO Study Program) are the abilities possessed by each Study Program graduate which are the internalization of attitudes, mastery of knowledge and skills according to the level of their study program obtained through the learning process.
- 2. The PLO imposed on courses are several learning outcomes of study program graduates (CPL-Study Program) which are used for the formation/development of a course consisting of aspects of attitude, general skills, special skills and knowledge.
- 3. **Program Objectives (PO)** are abilities that are specifically described from the PLO assigned to a course, and are specific to the study material or learning materials for that course.
- 4. **Subject Sub-PO (Sub-PO)** is a capability that is specifically described from the PO that can be measured or observed and is the final ability that is planned at each learning stage, and is specific to the learning material of the course.
- 5. Indicators for assessing ability in the process and student learning outcomes are specific and measurable statements that identify the ability or performance of student learning outcomes accompanied by evidence.

- 6. Assessment Criteria are benchmarks used as a measure or measure of learning achievement in assessments based on predetermined indicators. Assessment criteria are guidelines for assessors so that assessments are consistent and unbiased. Criteria can be quantitative or qualitative.
- 7. Forms of assessment: test and non-test.
- 8. Forms of learning: Lecture, Response, Tutorial, Seminar or equivalent, Practicum, Studio Practice, Workshop Practice, Field Practice, Research, Community Service and/or other equivalent forms of learning. Learning Methods: Small Group Discussion, Role-Play & Simulation, Discovery Learning, Self-Directed Learning, Cooperative
- 9. Learning, Collaborative Learning, Contextual Learning, Project Based Learning, and other equivalent methods.
- 10. Learning materials are details or descriptions of study materials which can be presented in the form of several main points and sub-topics.
- 11. The assessment weight is the percentage of assessment of each sub-PO achievement whose size is proportional to the level of difficulty of achieving that sub-PO, and the total is 100%.
- 12. TM=Face to face, PT=Structured assignments, BM=Independent study.