Document Code

Universitas Negeri Surabaya Faculty of Mathematics and Natural Sciences Undergraduate Physics Study Program

UNESA	Undergraduate Physics Study Program																		
		SEM	1ES	STI	ΞR	LE	EAF	RN	ING	G F	PLA	N							
Courses	CODE	CODE			Course Family			Credit Weight			SE	MEST	ER	Co	mpilati te	ion			
Quantum Phy	4520104065	5							T=4	P=	0 EC	TS=6.36	6	5		Jul	y 17, 20	024	
AUTHORIZATION		SP Develop	er						Cour	se Cl	ustei	Coor	dinator	St	udy Pı	rogran	n Coo	rdinato	or
		Utama Alan	Utama Alan Deta, S.Pd., M.Pd., M.Si.									P	Prof. Dr. Munasir, S.Si., M.Si.				Si.		
Learning model	Case Studies																		
Program Learning	PLO study prog	gram which is cha	argeo	l to t	he c	ours	е												
Outcomes	Program Objec	tives (PO)																	
(PLO)	PO - 1 Develop an independent and honest character in carrying out lecture assignments in Quantum Physics																		
	PO - 2 Mastering the theoretical concepts of Quantum Physics in general and the theoretical concept of Heisenberg uncertainty which applies to microscopic physical systems as well as the formulation of Schrodinger wave mechanics in depth																		
	PO - 3 Able to formulate solutions to procedural problems related to the application of quantum theoretical concepts with Heisenberg uncertainty and Schrodinger wave mechanics to the reformulation of the theory of the hydrogen atom and other larger atoms																		
	PLO-PO Matrix																		
		P.O PO-1 PO-2 PO-3																	
	PO Matrix at the	e end of each lear	rning	sta	ge (S	Sub-F	PO)												
																			7
		P.O		1	1	1					We	ek			1		1		
			1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
		PO-1																	
		PO-2																	
		PO-3																	
Short Course Description	formulation of Scl potential fields (a Schrodinger equa	s studies the histo hrodinger wave med anharmonic and ha ation radial compone iena, Zeeman effect	hanic rmon ents a	cs to ic), a ind sp	solve revi oherio	micr iew c cal ha	osco of the	pic pa	article	phys f the	sićs p hydro	roblem ogen a	ns witho	ut and	d with a co	the promplete	esenc e solu	e of sim tion of	nple the
References	Main :																		
	 Zettili, N. Grifftiths, Gasiorow Liboff, R. 	o, T. and Rahmawati 2009. Quantum Me D. J. 1995. Introduc vicz, S. 1996. Quant 1980. Introductory on, D. 2005. Quantun	chani ction t um P Quan	ics. V to Qu hysic tum N	Vest S antur s. Ne Vech	Susse n Me w Yo anics	ex, Uł chani ork, U . Rea	K: Joh ics. N S: Joh ding,	nn Wi lew J hn W US:	iley aı ersey iley a Addis	nd So , US: nd So on-W	ns. Prenti ons. 'esley.	ce-Hall.						
	Supporters:																		
•																			

Supporting lecturer

Dr. Zainul Arifin Imam Supardi, M.Si. Dr. Frida Ulfah Ermawati, M.Sc. Prof. Dr. Munasir, S.Si., M.Si. Utama Alan Deta, S.Pd., M.Pd., M.Si.

Week-	Final abilities of each learning stage	Evaluation		Lea Stude	elp Learning, rning methods, ent Assignments, stimated time]	Learning materials [References]	Assessment Weight (%)
	(Sub-PO)	Indicator	Criteria & Form	Offline (offline)	Online (online)	[reserved]	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
1	Able to understand the phenomenon of black body radiation starting from physical phenomena to classical and quantum approaches	Students are able to understand black body radiation from physical phenomena to classical and quantum approaches and are able to solve relevant problems related to black body radiation	Criteria: Qualitative Form of Assessment: Participatory Activities	Lecture, Discussion, Question and answer, Assignment 3x 50 minutes	Lecture, Discussion, Question and answer, Assignment 3 x 50 minutes	Material: Thermal Radiation, Wien's Shift Law, Rayleigh- Jeans Law, Planck's Ideas References: Prastowo, T. and Rahmawati, E. 2014. Lecture Notes on Quantum Physics. Unpublished work.	5%
2	Able to understand the behavior of particles from electromagnetic waves (photons)	Students are able to understand the behavior of particles from electromagnetic waves (photons) and are able to solve relevant problems related to the photoelectric effect and the Compton effect	Criteria: Qualitative Form of Assessment : Participatory Activities	Lecture, Discussion, Question and answer, Assignment 3 x 50 minutes	Lecture, Discussion, Question and answer, Assignment 3 x 50 minutes	Material: Photoelectric Effect, Compton Effect References: Prastowo, T. and Rahmawati, E. 2014. Lecture Notes on Quantum Physics. Unpublished work.	5%
3	Able to understand the development of atomic theory up to the phenomenon of the hydrogen atom's spectral lines, the birth of primitive quantum theory to explain the theory of the hydrogen atom	Students are able to understand the development of atomic theory up to the phenomenon of the hydrogen atom's spectral lines, the birth of primitive quantum theory to explain the theory of the hydrogen atom, and solve relevant problems related to Bohr's atomic theory.	Criteria: Qualitative Form of Assessment: Participatory Activities	Lecture, Discussion, Question and answer, Assignment 3 x 50 minutes	Lecture, Discussion, Question and answer, Assignment 3 x 50 minutes	Material: Atomic Model, Bohr Atomic Model, Bohr Atomic Model, Hydrogen Atomic Line Spectrum, Principle of Correspondence References: Prastowo, T. and Rahmawati, E. 2014. Lecture Notes on Quantum Physics. Unpublished work.	5%
4	Able to understand the wave behavior of moving microscopic particles	Students are able to understand the wave behavior of moving microscopic particles and are able to solve relevant problems related to de Broglie's hypothesis	Criteria: Qualitative Form of Assessment: Participatory Activities	Lecture, Discussion, Question and answer, Assignment 3 x 50 minutes	Lecture, Discussion, Question and answer, Assignment 3 x 50 minutes	Material: de Broglie Hypothesis, Implications of de Broglie Hypothesis, Davisson- Germer Experiment Bibliography: Prastowo, T. and Rahmawati, E. 2014. Lecture Notes on Quantum Physics. Unpublished work.	5%

5	Able to understand	Students are	Criteria:	Lecture,	Lecture, Discussion,	Material:	5%
	the nature of the microscopic world which is limited by the Heisenberg uncertainty principle	able to understand the nature of the microscopic world which is limited by the Heisenberg uncertainty principle and are able to solve relevant problems related to the Heisenberg uncertainty	Qualitative Form of Assessment : Participatory Activities	Discussion, Question and Answer 3 x 50 minutes	Question and Answer 3 x 50 minutes	Heisenberg's Uncertainty Principle, Interpretation and consequences of the Heisenberg's Uncertainty Principle Library: Prastowo, T. and Rahmawati, E. 2014. Lecture Notes on Quantum Physics. Unpublished work.	
6	Able to understand the basic principles of wave mechanics in the form of quantum mechanical postulates	Students are able to understand the basic principles of wave mechanics in the form of quantum mechanical postulates, and are able to calculate normalization constants and expectation values	Criteria: Qualitative Form of Assessment : Participatory Activities	Lecture, Discussion, Question and Answer 3 x 50 minutes	Lecture, Discussion, Question and Answer 3 x 50 minutes	Material: Operators and measurements in quantum mechanics, Wave Function, Born Interpretation, Normalization Principle, Superposition Principle, Expectation Value References: Prastowo, T. and Rahmawati, E. 2014. Lecture Notes on Quantum Physics. Unpublished work.	5%
7	Able to understand the concept of wave mechanics, the Schrodinger equation to solve several physics problems related to microscopic particles, able to reduce the conservation of energy in several simple potential cases	Students are able to understand the concept of wave mechanics, the Schrodinger equation to solve several physics problems related to microscopic particles, and are able to reduce the conservation of energy in several simple potential cases.	Criteria: Qualitative	Lecture, Discussion, Question and Answer 3 x 50 minutes	Lecture, Discussion, Question and Answer 3 x 50 minutes	Material: Stationary state, Particles in a box, Simple potential problems, Law of continuity, Harmonic oscillator References: Prastowo, T. and Rahmawati, E. 2014. Lecture Notes on Quantum Physics. Unpublished work.	5%
8	Students are able to master the theoretical concepts of quantum physics for microscopic systems: black body thermal radiation, photoelectric effect, Compton effect, Bohr atomic model, de Broglie hypothesis, Heisenberg uncertainty	Students are able to understand and solve USS questions that are relevant to the teaching material on quantum phenomena in microscopic systems properly and correctly	Criteria: Quantitative	Written Test 3 x 50 minutes	Written Test 3 x 50 minutes	Material: Mid- semester Evaluation References: Prastowo, T. and Rahmawati, E. 2014. Lecture Notes on Quantum Physics. Unpublished work.	10%

			T	1	1		
9	Able to understand the concept of wave mechanics, Schrodinger's equation to solve several physics problems related to microscopic particles, able to derive energy conservation in several simple potential cases, able to understand analytical and algebraic methods in the case of quantum harmonic oscillators	Students are able to understand the concept of wave mechanics, the Schrodinger equation to solve several physics problems related to microscopic particles, are able to derive energy conservation in several simple potential cases, are able to understand analytical and algebraic methods to solve quantum harmonic oscillator problems	Criteria: Qualitative Form of Assessment: Participatory Activities	Lecture, Discussion, Question and Answer 3 x 50 minutes	Lecture, Discussion, Question and Answer 3 x 50 minutes	Material: Stationary state, Particles in a box, Simple potential problems, Law of continuity, Harmonic oscillator References: Prastowo, T. and Rahmawati, E. 2014. Lecture Notes on Quantum Physics. Unpublished work.	5%
10	Able to understand the complete solution of the 3D Schrodinger equation in the form of radial components and spherical harmonics, understand the reformulation of hydrogen atoms with spherical coordinates	Students are able to understand the complete solution of the 3D Schrodinger equation in the form of radial components and spherical harmonics, and are able to understand the reformulation of the hydrogen atom with spherical coordinates	Criteria: Qualitative Form of Assessment: Participatory Activities	Lecture, Discussion, Question and Answer 3 x 50 minutes	Lecture, Discussion, Question and Answer 3 x 50 minutes	Material: Schrodinger's equation in a spherical coordinate system, Review of the theory of the hydrogen atom. Reference: Prastowo, T. and Rahmawati, E. 2014. Lecture Notes on Quantum Physics. Unpublished work.	5%
11	Able to understand the complete solution of the 3D Schrodinger equation in the form of radial components and spherical harmonics, understand the reformulation of hydrogen atoms with spherical coordinates	Students are able to understand the complete solution of the 3D Schrodinger equation in the form of radial components and spherical harmonics, and are able to understand the reformulation of the hydrogen atom with spherical coordinates	Criteria: Qualitative Form of Assessment : Participatory Activities	Lecture, Discussion, Question and Answer 3 x 50 minutes	Lecture, Discussion, Question and Answer 3 x 50 minutes	Material: Schrodinger's equation in a spherical coordinate system, Review of the theory of the hydrogen atom. Reference: Prastowo, T. and Rahmawati, E. 2014. Lecture Notes on Quantum Physics. Unpublished work.	5%
12	Able to understand the reformulation of the hydrogen atom with spherical coordinates, able to understand the importance of orbital and spin angular momentum and total angular momentum as a complete picture of the quantum theory of the hydrogen atom	Able to understand the reformulation of the hydrogen atom with spherical coordinates, able to understand the importance of orbital and spin angular momentum and total angular momentum as a complete picture of the quantum theory of the hydrogen atom	Criteria: Qualitative Form of Assessment: Participatory Activities	Lecture, Discussion, Question and answer, Assignment 3 x 50 minutes	Lecture, Discussion, Question and answer, Assignment 3 x 50 minutes	Material: Schrodinger's equation in a spherical coordinate system, Review of hydrogen atomic theory, Orbital angular momentum, Spin angular momentum, Total angular momentum References: Prastowo, T. and Rahmawati, E. 2014. Lecture Notes on Quantum Physics. Unpublished work.	5%

	Able to understand the reformulation of the hydrogen atom with spherical coordinates, able to understand the importance of orbital and spin angular momentum and total angular momentum as a complete picture of the quantum theory of the hydrogen atom	Able to understand the reformulation of the hydrogen atom with spherical coordinates, able to understand the importance of orbital and spin angular momentum and total angular momentum as a complete picture of the quantum theory of the hydrogen atom	Criteria: Qualitative Form of Assessment: Participatory Activities	Lecture, Discussion, Question and answer, Assignment 3 x 50 minutes	Lecture, Discussion, Question and answer, Assignment 3 x 50 minutes	Material: Schrodinger's equation in a spherical coordinate system, Review of hydrogen atomic theory, Orbital angular momentum, Spin angular momentum, Total angular momentum References: Prastowo, T. and Rahmawati, E. 2014. Lecture Notes on Quantum Physics. Unpublished work.	
14	Able to apply the concept of quantum mechanics to explain several phenomena in the spectrum of hydrogen atoms and other larger atoms	Students are able to apply the concept of quantum mechanics to explain several phenomena in the spectrum of hydrogen atoms and other larger atoms (fine and super fine structure, Zeeman effect and Stark effect)	Criteria: Qualitative Form of Assessment: Participatory Activities	Lecture, Discussion, Question and Answer 3 x 50 minutes	Lecture, Discussion, Question and Answer 3 x 50 minutes	Matter: Fine structure, Relativistic corrections, Role of Spin, Spin-orbit coupling, Zeeman Effect, Stark Effect Reader: Prastowo, T. and Rahmawati, E. 2014. Lecture Notes on Quantum Physics. Unpublished work.	5%
15	Able to apply the concept of quantum mechanics to explain several phenomena in the spectrum of hydrogen atoms and other larger atoms	Students are able to apply the concept of quantum mechanics to explain several phenomena in the spectrum of hydrogen atoms and other larger atoms (fine and super fine structure, Zeeman effect and Stark effect)	Criteria: Qualitative Form of Assessment : Participatory Activities	Lecture, Discussion, Question and Answer 3 x 50 minutes	Lecture, Discussion, Question and Answer 3 x 50 minutes	Matter: Fine structure, Relativistic corrections, Role of Spin, Spin-orbit coupling, Zeeman Effect, Stark Effect Reader: Prastowo, T. and Rahmawati, E. 2014. Lecture Notes on Quantum Physics. Unpublished work.	5%
16	Able to master the theoretical concepts of quantum physics	1.able to understand the concept of wave mechanics, Schrodinger's equation to solve several physics problems related to microscopic particles, able to derive energy conservation in several simple potential cases, able to understand analytical and algebraic methods to solve quantum harmonic	Criteria: Quantitative	Written Test 3 x 50 minutes	Written Test 3 x 50 minutes	Material: Final Semester Evaluation References: Prastowo, T. and Rahmawati, E. 2014. Lecture Notes on Quantum Physics. Unpublished work.	20%

1	oscillator			
	problems			
	problems 2 abla to			
	2.able to			
	understand			
	the complete			
	solution of			
	the 3D			
	Schrodinger			
	equation in			
	the form of			
	radial			
	components			
	and spherical			
	harmonics,			
	able to			
	understand			
	the			
	reformulation			
	of the			
	hydrogen			
	atom with			
	spherical			
	coordinates			
	2 objects			
	3.able to			
	understand			
	the			
	reformulation			
	of the			
	hydrogen			
	atom with			
	spherical			
	coordinates,			
	able to			
	understand			
	the			
	importance of			
	orbital and			
	spin angular			
	momentum			
	and total			
	angular			
	momentum			
	as a			
	complete			
	nioturo ef the			
	picture of the			
	quantum			
	theory of the			
	hydrogen			
	atom			
	4.able to apply			
	the concepts			
	of guarture			
	of quantum			
	mechanics to			
	explain			
	several			
	phenomena			
	in the			
	spectrum of			
	Spectrum of			
	hydrogen			
	atoms and			
	other larger			
	atoms (fine			
	and super			
	fine structure,			
	Zeeman			
	effect and			
	Stark effect)			

Evaluation Percentage Recap: Case Study

	Evaluation i crocinage neoup. Oase e							
П	No	Evaluation	Percentage					
Г	1.	Participatory Activities	65%					
			65%					

Notes

- Learning Outcomes of Study Program Graduates (PLO Study Program) are the abilities possessed by each Study
 Program graduate which are the internalization of attitudes, mastery of knowledge and skills according to the level of their
 study program obtained through the learning process.
- The PLO imposed on courses are several learning outcomes of study program graduates (CPL-Study Program) which
 are used for the formation/development of a course consisting of aspects of attitude, general skills, special skills and
 knowledge.

- 3. **Program Objectives (PO)** are abilities that are specifically described from the PLO assigned to a course, and are specific to the study material or learning materials for that course.
- 4. **Subject Sub-PO (Sub-PO)** is a capability that is specifically described from the PO that can be measured or observed and is the final ability that is planned at each learning stage, and is specific to the learning material of the course.
- 5. **Indicators for assessing** ability in the process and student learning outcomes are specific and measurable statements that identify the ability or performance of student learning outcomes accompanied by evidence.
- 6. Assessment Criteria are benchmarks used as a measure or measure of learning achievement in assessments based on predetermined indicators. Assessment criteria are guidelines for assessors so that assessments are consistent and unbiased. Criteria can be quantitative or qualitative.
- 7. Forms of assessment: test and non-test.
- 8. **Forms of learning:** Lecture, Response, Tutorial, Seminar or equivalent, Practicum, Studio Practice, Workshop Practice, Field Practice, Research, Community Service and/or other equivalent forms of learning.
- Learning Methods: Small Group Discussion, Role-Play & Simulation, Discovery Learning, Self-Directed Learning, Cooperative Learning, Collaborative Learning, Contextual Learning, Project Based Learning, and other equivalent methods
- 10. Learning materials are details or descriptions of study materials which can be presented in the form of several main points and sub-topics.
- 11. The assessment weight is the percentage of assessment of each sub-PO achievement whose size is proportional to the level of difficulty of achieving that sub-PO, and the total is 100%.
- 12. TM=Face to face, PT=Structured assignments, BM=Independent study.