

Universitas Negeri Surabaya Faculty of Mathematics and Natural Sciences Undergraduate Physics Study Program

Document Code

SEMESTER LEARNING PLAN

Courses			CODE				C	Course	Fam	ily	C	Credi	t Wei	ght		SEME	STER	Con	npilation
Mathematica	Physics II		452010407	'1			C	Compu Prograr	lsory n Sub	Study	/ 1	ſ = 4	P=0	ECTS=6	.36	:	2	Jani 202	uary 6, 4
AUTHORIZAT	ΓΙΟΝ		SP Develo	per						Co	Course Cluster Coordinator			or	Study	Progra	m Coo	ordinato	
			Nugrahani Primary Putri, M.Si.								Prof. Dr. Munasir, S.Si., M.Si		.Si., M.Si						
Learning model	Case Studies		•																
Program	PLO study pro	gram t	hat is char	ged t	o the	cour	se												
Learning Outcomes	PLO-5	Able t	to demonstra	te as	a goo	od scie	ntis	t, critic	al thir	nking	skills	and	innov	ation in re	esear	ch and	profess	sional	fields.
(PLO)	PLO-10	Analy	ze physical s	yster	ns by	applyi	ng r	mather	natics	and	comp	outing	/ICT	tools.					
	Program Obje	ctives ((PO)																
	PO - 1	PO-1 Students are able to formulate simple physical systems related to mechanics and thermodynamics into mathematical models using relevant symbolic/numeric language.																	
	PO - 2	Stude mathe	nts are able ematical phys	to so ics a	olve p nd cor	roblem nputat	is ir tiona	n simpl al appr	e phy oache	/sical es.	syste	ems i	elate	d to mec	hanic	s and	thermo	dynam	nics using
	PO - 3	Students are able to analyze a simple physical system related to mechanics and thermodynamics using mathematical physics and computational approaches.																	
	PLO-PO Matrix																		
											7								
			P.0		PL	0-5	-5 PLO-10												
			PO-1																
			PO-2																
			PO-3																
	PO Matrix at th	ne end	of each lea	rning	g staq	ge (Su	ıb-F	PO)											
			D.O.									Ma							
			P.0	4				-	0	7	0	wee	эк	44	10	10		45	10
				1	2	3	4	5	6	1	8	9	10	11	12	13	14	15	16
		PC	D-1																
		PC)-2										 						
		PC	0-3																
Short Course Description	This course exa through active le	amines arning b	infinite serie by combining	s, co the r	omplex	k num ds of d	ber: lisci	s, part ussion,	ial di ques	fferer	ntials, and a	ordi answ	nary ers, a	differentia Iso assigi	al eq nmer	uations its usin	s, and g IT.	vector	analysis
References	Main :																		
	1. Mary L. Boas. 2006. Mathematical Methods in the Physical Science . 3th edition. New York: John Wiley & Sons.																		
	Supporters:																		
	 Arfken, G. 1995. Mathematical Methods for Physicists. Academic Press. Riley, K.F., Hobson, M.P., Bence, S.J. 2006. Mathematical Methods for Physics and Engineering, 3rd ed. Cambridge Ur Press. Hassani, Sadri. 2009. Mathematical Methods for Students of Physics and Related Fields, 2nd ed. Illinois: Springer. 									lge Univ.									

Support lecturer	ting Dr. Zainul Arifin II SUPARDIYONO Prof. Dr. Munasir Dzulkiflih, S.Si., N Nugrahani Primar Dr. Eng. Evi Suae Dr. Fitriana, S.Si.	nam Supardi, M.Si. , S.Si., M.Si. A.T. ry Putri, S.Si., M.Si. ebah, M.Si., M.Sc.					
Final abilities of each learning stage		Evaluation		Help Learning, Learning methods, Student Assignments, [Estimated time]		Learning materials [References	Assessment Weight (%)
	(Sub-PO)	Indicator	Criteria & Form	Offline(offline)	Online (<i>online</i>)	1	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
1	 Students are able to formulate simple physical systems related to mechanics and thermodynamics into mathematical models using infinite series Students are able to solve problems of simple physical systems related to mechanics and thermodynamics into mathematical models using infinite series and computational tools Students are able to analyze problems of simple physical systems related to ons and thermodynamics into mathematical models using infinite series and thermodynamics into mathematical models using infinite series and thermodynamics into 	 1.1. Students are able to undertake convergence test of a series. 2.2. Students are able to analyze a function into power series. 3.3. Students are able to solve mechanics and thermodynamics problems using series concept. 	Criteria: Students will get full marks if they meet the assessment indicators Form of Assessment : Participatory Activities, Portfolio Assessment	Lecture and discussion 4 x 50 minutes	Lectures and discussions 4 x 50	Material: 1. Definition and notation 2. Convergence test of infinite series 3. Alternating series 4. Power series 5. Convergence interval of power series 6. Taylor Analysis of a function Bibliography: <i>Mary L. Boas.</i> 2006. <i>Mathematical</i> <i>Methods in</i> <i>the Physical</i> <i>Science. 3rd</i> <i>edition. New</i> York: John <i>Wiley & Sons.</i>	2%

2	2	 Students are able to formulate simple physical systems related to mechanics and thermodynamics into mathematical models using infinite series Students are able to solve problems of simple physical systems related to mechanics and thermodynamics into mathematical models using infinite series and computational tools Students are able to analyze problems of simple physical systems related to mechanics and thermodynamics into mathematical models using infinite series and thermodynamics into mathematical models using infinite series and thermodynamics into 	 1.1. Students are able to undertake convergence test of a series. 2.2. Students are able to analyze a function into power series. 3.3. Students are able to solve mechanics and thermodynamics problems using series concept. 	Criteria: Students will get full marks if they meet the assessment indicators Form of Assessment : Participatory Activities, Portfolio Assessment	Lecture and discussion 4 x 50 minutes	Lectures and discussions 4 x 50	Material: 1. Definition and notation 2. Convergence test of infinite series 3. Alternating series 4. Power series 5. Convergence interval of power series 6. Taylor Analysis of a function Bibliography: Mary L. Boas. 2006. Mathematical Methods in the Physical Science. 3rd edition. New York: John Wiley & Sons.	2%
3	3	 Students are able to formulate simple physical systems related to mechanics and thermodynamics into mathematical models using infinite series Students are able to solve problems of simple physical systems related to mechanics and thermodynamics into mathematical models using infinite series and computational tools Students are able to analyze problems of simple physical systems related to mechanics and computational tools Students are able to analyze problems of simple physical systems related to mechanics and thermodynamics into mathematical models using infinite series and computational tools. 	 1.1. Students are able to undertake convergence test of a series. 2.2. Students are able to analyze a function into power series. 3.3. Students are able to solve mechanics and thermodynamics problems using series concept. 	Criteria: Students will get full marks if they meet the assessment indicators Form of Assessment : Participatory Activities, Portfolio Assessment	Lecture and discussion 4 x 50 minutes	Lectures and discussions 4 x 50	Material: 1. Definition and notation 2. Convergence test of infinite series 3. Alternating series 4. Power series 5. Convergence interval of power series 6. Taylor Analysis of a function Bibliography: Mary L. Boas. 2006. Mathematical Methods in the Physical Science. 3rd edition. New York: John Wiley & Sons.	5%

4	 Students are able to formulate simple physical systems related to mechanics and thermodynamics into mathematical models using complex numbers Students are able to solve problems of simple physical systems related to mechanics and thermodynamics into mathematical models using complex numbers and computational tools Students are able to analyze problems of simple physical systems related to mechanics and thermodynamics into mathematicnal models using complex numbers and computational tools 	 1.1. Students are able to perform complex algebraic operations 2.2. Students are able to solve problems related to complex series, exponential functions, logarithms, trigonometry, and hyperbolic complexes. 3.3. Students are able to apply complex numbers to solve physics problems 	Criteria: Students will get full marks if they meet the assessment indicators Form of Assessment : Participatory Activities, Portfolio Assessment	Lectures and discussions. 4 x 50 minutes	Lectures and discussions 4 x 50	Material: 1. Real and imaginary parts of complex numbers 2. Complex number algebra 3. Complex fields 4. Complex equations 5. Complex equations 5. Complex power series 7. Exponential functions and Euler's formula 8. Complex logarithmic functions 9. Complex powers and roots 10. Trigonometric and hyperbolic functions 11. Application of complex numbers in physics Reference: <i>Mary L. Boas.</i> 2006. <i>Mathematical Methods in the Physical Science. 3rd edition. New</i> York: John Wiley & Sons.	2%
5	 Students are able to formulate simple physical systems related to mechanics and thermodynamics into mathematical models using complex numbers Students are able to solve problems of simple physical systems related to mechanics and thermodynamics into mathematical models using complex numbers and computational tools Students are able to analyze problems of simple physical systems related to mechanics and thermodynamics into mathematical models using complex numbers and computational tools 	 1.1. Students are able to perform complex algebraic operations 2.2. Students are able to solve problems related to complex series, exponential functions, logarithms, trigonometry, and hyperbolic complexes. 3.3. Students are able to apply complex numbers to solve physics problems 	Form of Assessment : Participatory Activities, Portfolio Assessment	Lectures and discussions. 4 x 50 minutes	Lectures and discussions 4 x 50	Material: 1. Real and imaginary parts of complex numbers 2. Complex number algebra 3. Complex fields 4. Complex equations 5. Complex power series 7. Exponential functions and Euler's formula 8. Complex power series 7. Exponential functions and Euler's formula 8. Complex logarithmic functions 9. Complex powers and roots 10. Trigonometric and hyperbolic functions 11. Application of complex numbers in physics Reference: Mary L. Boas. 2006. Mathematical Methods in the Physical Science. 3rd edition. New York: John Wiley & Sons.	5%

6	 Students are able to formulate simple physical systems related to mechanics and thermodynamics into mathematical models using complex numbers Students are able to solve problems of simple physical systems related to mechanics and thermodynamics into mathematical models using complex numbers and computational tools Students are able to analyze problems of simple physical systems related to one sing complex numbers and computational tools Students are able to analyze problems of simple physical systems related to mechanics and thermodynamics into mathematical models using complex numbers and computational tools 	 1.1. Students are able to perform complex algebraic operations 2.2. Students are able to solve problems related to complex series, exponential functions, logarithms, trigonometry, and hyperbolic complexes. 3.3. Students are able to apply complex numbers to solve physics problems 	Criteria: Students will get full marks if they meet the assessment indicators Form of Assessment : Participatory Activities, Portfolio Assessment	Lectures and discussions. 4 x 50 minutes	Lectures and discussions 4 x 50	Material: 1. Real and imaginary parts of complex numbers 2. Complex number algebra 3. Complex fields 4. Complex equations 5. Complex series 6. Complex power series 7. Exponential functions and Euler's formula 8. Complex logarithmic functions 9. Complex powers and roots 10. Trigonometric and hyperbolic functions 11. Application of complex numbers in physics Reference: Mary L. Boas. 2006. Mathematical Methods in the Physical Science. 3rd edition. New York: John Wiley & Sons.	5%
7	 1.Students are able to formulate simple physical systems related to mechanics and thermodynamics into mathematical models using complex numbers 2.Students are able to solve problems of simple physical systems related to mechanics and thermodynamics into mathematical models using complex numbers and computational tools 3.Students are able to analyze problems of simple physical systems related to mechanics and computational tools 3.Students are able to analyze problems of simple physical systems related to mechanics and thermodynamics into mathematical models using complex numbers and computational tools. 	 1.1. Students are able to perform complex algebraic operations 2.2. Students are able to solve problems related to complex series, exponential functions, logarithms, trigonometry, and hyperbolic complexes. 3.3. Students are able to apply complex numbers to solve physics problems 	Criteria: Students will get full marks if they meet the assessment indicators Form of Assessment : Participatory Activities, Portfolio Assessment	Lectures and discussions. 4 x 50 minutes	Lectures and discussions 4 x 50	Material: 1. Real and imaginary parts of complex numbers 2. Complex number algebra 3. Complex fields 4. Complex equations 5. Complex series 6. Complex series 6. Complex series 7. Exponential functions and Euler's formula 8. Complex logarithmic functions 9. Complex powers and roots 10. Trigonometric and hyperbolic functions 11. Application of complex numbers in physics Reference: <i>Marthematical Methods in the Physical Science. 3rd edition. New</i> York: John Wiley & Sons.	5%

8	Students are able to solve physics and mathematics problems using the concepts of infinite series and complex numbers		Criteria: Students will get full marks if they meet the assessment indicators Form of Assessment : Test	Mid-term examination 2 x 50	UTS 2 x 50	Material: Ch 1 and 2 Bibliography: Mary L. Boas. 2006. Mathematical Methods in the Physical Science. 3rd edition. New York: John Wiley & Sons.	20%
9	 Students are able to formulate simple physical systems related to mechanics and thermodynamics into mathematical models using partial differentiation Students are able to solve problems of simple physical systems related to mechanics and thermodynamics into mathematical models using partial differentiation and computational tools. Students are able to analyze problems of simple physical systems related to mechanics and thermodynamics into mathematical models using partial differentiation and thermodynamics into mathematical models using partial differentiation and thermodynamics into mathematical models using partial differentiation and computational tools. 	 1.1. Students are able to execute partial differential using chain rules. 2.2. Students are able to execute implicit differentiation, change variables and limit requirements 3.3. Students are able to look for minimum and maximum value of a function 4.4. Students are able to solve mechanics and thermodynamics problems using partial differential concepts 	Criteria: Students will get full marks if they meet the assessment indicators Form of Assessment : Participatory Activities, Portfolio Assessment	Lectures and discussions 4 x 50	Lectures and discussions 4 x 50	Material: Ch 4 Bibliography: Mary L. Boas. 2006. Mathematical Methods in the Physical Science. 3rd edition. New York: John Wiley & Sons.	5%

	 1. Students are able to formulate simple physical systems related to mechanics and thermodynamics into mathematical models using partial differentiation 2. Students are able to solve problems of simple physical systems related to mechanics and thermodynamics into mathematical models using partial differentiation and computational tools. 3. Students are able to analyze problems of simple physical systems related to mechanics and thermodynamics into mathematical models using partial differentiation and computational tools. 3. Students are able to analyze problems of simple physical systems related to mechanics and differentiation and computational tools. 	 1.1. Students are able to execute partial differential using chain rules. 2.2. Students are able to execute implicit differentiation, change variables and limit requirements 3.3. Students are able to look for minimum and maximum value of a function 4.4. Students are able to solve mechanics and thermodynamics problems using partial differential concepts 	Students will get full marks if they meet the assessment indicators Form of Assessment : Participatory Activities	discussions 4 x 50	discussions 4 x 50	Bibliography: Mary L. Boas. 2006. Mathematical Methods in the Physical Science. 3rd edition. New York: John Wiley & Sons.	
--	---	---	---	-----------------------	-----------------------	--	--

		 able to formulate simple physical systems related to mechanics and thermodynamics into mathematical models using ordinary differential equations 2.Students are able to solve problems of simple physical systems related to mechanics and thermodynamics into mathematical models using ordinary differential equations and computational tools. 3.Students are able to analyze problems of simple physical systems related to mechanics and thermodynamics into mathematical models using ordinary differential equations and computational tools. 	 able to identify first and second order differential equations related to physics concepts particularly mechanics and thermodynamics. 2.2. Students are able to solve first order differential equations. 3.3. Students are able to find solutions for first order differential equations in physics problems. 	Students will get full marks if they meet the assessment indicators Form of Assessment : Participatory Activities, Portfolio Assessment	and discussions 4 x 50	discussions 4 x 50	Bibliography: Mary L. Boas. 2006. Mathematical Methods in the Physical Science. 3rd edition. New York: John Wiley & Sons.	
--	--	--	--	--	------------------------------	-----------------------	--	--

		able to formulate simple physical systems related to mechanics and thermodynamics into mathematical models using ordinary differential equations 2 .Students are able to solve problems of simple physical systems related to mechanics and thermodynamics into mathematical models using ordinary differential equations and computational tools. 3 .Students are able to analyze problems of simple physical systems related to mechanics and thermodynamics into mathematical models using ordinary differential equations and computational tools. 3 .Students are able to analyze problems of simple physical systems related to mechanics and thermodynamics into mathematical models using ordinary differential equations and computational tools.	able to solve second order differential equations. 2.2. Students are able to find solutions for second order differential equations in physics problems. 3.3. Students are able to apply ordinary differential equations to solve physics problems in accordance with the concepts of mechanics and thermodynamics.	Students will get full marks if they meet the assessment indicators Form of Assessment : Participatory Activities, Portfolio Assessment	and discussions 4 x 50	discussions 4 x 50	Bibliography: Mary L. Boas. 2006. Mathematical Methods in the Physical Science. 3rd edition. New York: John Wiley & Sons.	
--	--	---	---	--	------------------------------	-----------------------	--	--

	able to formulate simple physical systems related to mechanics and thermodynamics into mathematical models using ordinary differential equations 2.Students are able to solve problems of simple physical systems related to mechanics and thermodynamics into mathematical models using ordinary differential equations and computational tools. 3.Students are able to analyze problems of simple physical systems related to mechanics and thermodynamics into mathematical models using ordinary differential equations and computational tools. and thermodynamics into mathematical models using ordinary differential equations and computational tools.	 able to solve second order differential equations. 2.2. Students are able to find solutions for second order differential equations in physics problems. 3.3. Students are able to apply ordinary differential equations to solve physics problems in accordance with the concepts of mechanics and thermodynamics. 	Students will get full marks if they meet the assessment indicators Form of Assessment : Participatory Activities, Portfolio Assessment	and discussions 4 x 50	discussions 4 x 50	Bibliography: Mary L. Boas. 2006. Mathematical Methods in the Physical Science. 3rd edition. New York: John Wiley & Sons.	
--	---	---	--	------------------------------	-----------------------	--	--

14	 Students are able to formulate simple physical systems related to mechanics and thermodynamics into mathematical models using vector analysis Students are able to solve problems of physical systems related to mechanics and thermodynamics into mathematical models using vector analysis and computational tools. Students are able to analyze problems of simple physical systems related to mechanics and thermodynamics into mathematical models using vector analysis and computational tools. 	 1.1. Students are able to hold vector multiplication and vector differentiation, also formulate a simple physical system using vector multiplication and vector 2.2. Students are able to use vector operators in cartesian coordinates, gradient, divergence and curl in simple physical models. 3.3. Students are able to understand Green Theorem, divergence theorem and Stokes theorem. 	Form of Assessment : Participatory Activities	Lectures and discussions 4 x 50	Lectures and discussions 4 x 50	Material: Ch 6 Bibliography: Mary L. Boas. 2006. Mathematical Methods in the Physical Science. 3rd edition. New York: John Wiley & Sons.	1%
15	 Students are able to formulate simple physical systems related to mechanics and thermodynamics into mathematical models using vector analysis Students are able to solve problems of physical systems related to mechanics and thermodynamics into mathematical models using vector analysis and computational tools. Students are able to analyze problems of simple physical systems related to mechanics and computational tools. Students are able to analyze problems of simple physical systems related to mechanics and thermodynamics into mathematical models using vector analysis and computational tools. 	 1.1. Students are able to hold vector multiplication and vector differentiation, also formulate a simple physical system using vector multiplication and vector 2.2. Students are able to use vector operators in cartesian coordinates, gradient, divergence and curl in simple physical models. 3.3. Students are able to understand Green Theorem, divergence theorem and Stokes theorem. 	Form of Assessment : Participatory Activities	Lectures and discussions 4 x 50	Lectures and discussions 4 x 50	Material: Ch 6 Bibliography: Mary L. Boas. 2006. Mathematical Methods in the Physical Science. 3rd edition. New York: John Wiley & Sons.	5%

16	Students are able to solve physics and mathematics problems using partial differential concepts, ordinary differential equations and vector analysis	Students are able to solve physics and mathematics problems using partial differential concepts, ordinary differential equations and vector analysis.	Criteria: Students will get full marks if they meet the assessment indicators Form of Assessment : Test	final exam 2 x 50	UAS 2 x 50	Material: Ch 4, 8 and 6 Bibliography: Mary L. Boas. 2006. Mathematical Methods in the Physical Science. 3rd edition. New York: John Wiley & Sons.	30%
----	--	---	---	----------------------	---------------	--	-----

Evaluation Percentage Recap: Case Study

No	Evaluation	Percentage	
1.	Participatory Activities	30.5%	
2.	Portfolio Assessment	19.5%	
3.	Test	50%	
		100%	

Notes

- Learning Outcomes of Study Program Graduates (PLO Study Program) are the abilities possessed by each Study
 Program graduate which are the internalization of attitudes, mastery of knowledge and skills according to the level of their
 study program obtained through the learning process.
- 2. The PLO imposed on courses are several learning outcomes of study program graduates (CPL-Study Program) which are used for the formation/development of a course consisting of aspects of attitude, general skills, special skills and knowledge.
- Program Objectives (PO) are abilities that are specifically described from the PLO assigned to a course, and are specific to the study material or learning materials for that course.
 Subject Sub-PO (Sub-PO) is a capability that is specifically described from the PO that can be measured or observed and
- Subject sub-PO (sub-PO) is a capability that is specifically described from the PO that can be measured or observed and is the final ability that is planned at each learning stage, and is specific to the learning material of the course.
 Indicators for assessing ability in the process and student learning outcomes are specific and measurable statements that
- Indicators for assessing ability in the process and student learning outcomes are specific and measurable statements that identify the ability or performance of student learning outcomes accompanied by evidence.
 Assessment Criteria are benchmarks used as a measure or measure of learning achievement in assessments based on
- 6. Assessment Criteria are benchmarks used as a measure or measure of learning achievement in assessments based on predetermined indicators. Assessment criteria are guidelines for assessors so that assessments are consistent and unbiased. Criteria can be quantitative or qualitative.
- 7. Forms of assessment: test and non-test.
- 8. Forms of learning: Lecture, Response, Tutorial, Seminar or equivalent, Practicum, Studio Practice, Workshop Practice, Field Practice, Research, Community Service and/or other equivalent forms of learning.
- 9. Learning Methods: Small Group Discussion, Role-Play & Simulation, Discovery Learning, Self-Directed Learning,
- Cooperative Learning, Collaborative Learning, Contextual Learning, Project Based Learning, and other equivalent methods. 10. Learning materials are details or descriptions of study materials which can be presented in the form of several main points and sub-topics.
- 11. The assessment weight is the percentage of assessment of each sub-PO achievement whose size is proportional to the level of difficulty of achieving that sub-PO, and the total is 100%.
- 12. TM=Face to face, PT=Structured assignments, BM=Independent study.