

Universitas Negeri Surabaya Faculty of Mathematics and Natural Sciences Undergraduate Physics Study Program

Document Code

0000

SEMESTER LEARNING PLAN

		CODE				Cοι	irse l	Famil	У	Cre	dit We	eight		SEMES	TER	Co Dat	mpilat te	ion
Mathematical P	hysics III	4520103	4520103233		Compulsory Study Program Subjects		T=3	P=0	ECTS	=4.77	2	ļ	Jar 202	uary 1 21	.,			
AUTHORIZATIC	ON N	SP Deve	loper						Cou	rse Clu	ister C	Coordin	ator	Study F	Progra	m Coo	ordina	tor
		Nugraha	ning Pri	mary	Putri,	M.Si			Dr. N	ſuhimn	natul K	íhoiro, S	.Si.	Prof. D	r. Mun	asir, S	.Si., M	.Si.
Learning model	Project Based Le	ed Learning																
Program	PLO study program that is charged to the course																	
Outcomes	PLO-9	Able to work as	an indiv	vidual	or tea	am ef	fectiv	/ely, ł	nave e	entrepre	eneuria	al skills,	and ca	are abou	enviro	onmen	tal issı	Jes
(PLO)	PLO-10	PLO-10 Analyze physical systems by applying mathematics and computing/ICT tools.																
	PLO-15 Solve problems in physical systems comprehensively using mathematics and computational tools.																	
	Program Object	Program Objectives (PO)																
	PO - 1 Students master classical and modern physics knowledge to identify the properties of a simple physical system using a mathematical physics approach																	
	PO - 2	PO - 2 Students are able to formulate the problems of a simple physical system into a mathematical model using relevant symbolic/numerical language																
	PO - 3	Students are able to use high-level thinking processes to form solutions from simple physical models																
	PO - 4	Students are al problems assist	ole to u ed by m	se a lathen	scien natics	tific a	attitud	le, cri	tical t	hinking	and	innovati	on ski	lls to exa	amine	physic	s lear	nin
	PLO-PO Matrix																	
	PO Matrix at the	PO-1 PO-2 PO-3 PO-4	earning	g sta	ge (S	iub-F	20)											
				-			-											
		P.O						1		,	Neek]
			1	2	3	4	5	6	7	8	9 1	11	. 12	2 13	14	15	16	-
		PO-1											_					_
		PO-2											_					_
		PO-3											4					
		PO-4]
Short Course Description	This course exami through active lear	ines: matrices a ning with a com	nd vect bination	or spa of dis	aces, scuss	3-din ion m	nensi 1etho	ional ds, qu	vector Jestio	r analy n and a	sis, tei Inswei	nsor ana r and IT-	alysis, assist	and con ed assigi	plex v ments	ariable	e funct	ion
References	Main :																	_
References	Main : 1. Boas, M.L 2. Anton, H.	. 2006. Mathem and Kaul, A., 20	atical M 19. Elei	lethod menta	ls in ti ary lin	he Ph ear a	nysica Igebra	al Scie a 12th	ence , n Editi	edisi 3 on. Joł	, John In Wile	Wiley & ey & Sor	& Sons ns. Ne	, New Yo w York	ork.			

	1. Arfken 2. Riley, I Press. 3. Hassa	G. 1995. Mathematica K.F., Hobson, M.P., Ber ni, Sadri. 2009. Mathem	l Methods for Physicis nce, S.J. 2006. Mathe natical methods for stu	sts , Academic F ematical Methor idents of physic	Press. ds for Physics and Engine s and related fields , 2nd	eering, edisi 3, Ca ed. Springer, Illino	ambridge Univ. Dis.
Support lecturer	ting Dr. Zainul Arifir Nugrahani Prin Dr. Muhimmatu	Imam Supardi, M.Si. ary Putri, S.Si., M.Si. I Khoiro, S. Si.					
Week-	Final abilities of each learning stage	Eval	Evaluation		Help Learning, Learning methods, Student Assignments, [Estimated time]		Assessment Weight (%)
	(Sub-PO)	Indicator	Criteria & Form	Offline(offline)	Online (<i>online</i>)	[References]	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
1	 Students master wave knowledge and modern physics to identify the relevant properties of a simple physical system Students are able to formulate simpl physical system problems related t waves and moder physics into mathematical models using relevant symbolic/numerica language Students are able to use a scientific attitude, critical thinking and innovation skills to examine the problems of studying waves and modern physics in secondary schools with the help of mathematics 	 Students are able to perform row reduction in a matrix Students are able to determine the determinant of a matrix using Cramer's rule 	Criteria: Quantitative Form of Assessment : Participatory Activities	Lectures, Discussions, Questions and Answers and Practice Questions 150 minutes	Lectures, Discussions, Questions and Answers, Watching Learning Videos and Practice Questions 150 minutes	Material: Linear Algebra: Introduction, Matrices Row Reduction, Determinants, Cramer's Rule Bibliography: Boas, ML 2006. Mathematical Methods in the Physical Science, 3rd edition, John Wiley & Sons, New York.	3%
2	 Students master wave knowledge and modern physics to identify the relevant properties of a simple physical system Students are able to formulate simpl physical system problems related t waves and moder physics into mathematical models using relevant symbolic/numerica language Students are able to use a scientific attitude, critical thinking and innovation skills to examine the problems of studying waves and modern physics in secondary schools with the help of mathematics 	 Students are able to perform row reduction in a matrix Students are able to determine the determinant of a matrix using Cramer's rule 	Criteria: Quantitative Form of Assessment : Participatory Activities, Project Results Assessment / Product Assessment	Lectures, Discussions, Questions and Answers and Practice Questions 150 minutes	Lectures, Discussions, Questions and Answers, Watching Learning Videos and Practice Questions 150 minutes	Material: Linear Algebra: Vectors, Lines and Planes, Matrix Operations, Linear Combination, Linear Function, Linear Operation References: Boas, ML 2006. Mathematical Methods in the Physical Science, 3rd edition, John Wiley & Sons, New York.	4%

3	 Students master wave knowledge and modern physics to identify the properties of a relevant physical system Students are able to formulate simple physical system problems related to waves and modern physics into mathematical models using relevant symbolic/numerical language Students are able to use a scientific attitude, critical thinking and innovation skills to examine the problems of studying waves and modern physics in secondary schools with the help of mathematics 	 Students understand the concept of linear vector spaces Students can determine eigenvalues and eigenfunctions 	Criteria: Quantitative Form of Assessment : Participatory Activities, Project Results Assessment / Product Assessment	Lectures, Discussions, Questions and Answers and Practice Questions 150 minutes	Lectures, Discussions, Questions and Answers, Watching Learning Videos and Practice Questions 150 minutes	Material: Linear Algebra: Linear Vector Spaces Eigenvalues and Eigenvectors, Diagonalizing Matrices References: Boas, ML 2006. Mathematical Methods in the Physical Science, 3rd edition, John Wiley & Sons, New York.	3%
4	 Students master wave knowledge and modern physics to identify the relevant properties of a simple physical system Students are able to formulate simple physical system problems related to waves and modern physics into mathematical models using relevant symbolic/numerical language Students are able to use a scientific attitude, critical thinking and innovation skills to examine the problems of studying waves and modern physics in secondary schools with the help of mathematics 	Students are able to solve wave and modern physics problems using matrix and vector space concepts	Criteria: Quantitative Form of Assessment : Participatory Activities, Project Results Assessment / Product Assessment	Lectures, Discussions, Questions and Answers and Practice Questions 150 minutes	Lectures, Discussions, Questions and Answers, Watching Learning Videos and Practice Questions 150 minutes	Material: Linear Algebra: Application of Diagonalization Bibliography: Boas, ML 2006. Mathematical Methods in the Physical Science, 3rd edition, John Wiley & Sons, New York.	3%

5	 Students master wave knowledge and modern physics to identify the properties of a physical system Students are able to formulate simple physical system problems related to waves and modern physics into mathematical models using relevant symbolic/numerical language Students are able to use a scientific attitude, critical thinking and innovation skills to examine the problems of studying waves and modern physics in secondary schools with the help of mathematics 	 Students are able to use the vector operator del in cylindrical and spherical 3D coordinates Students are able to perform gradient, divergence and curl operations on cylindrical and spherical 3D coordinates 	Criteria: Quantitative Form of Assessment : Participatory Activities, Project Results Assessment / Product Assessment	Lectures, Discussions, Questions and Answers and Practice Questions 150 minutes	Lectures, Discussions, Questions and Answers, Watching Learning Videos and Practice Questions 150 minutes	Material: Vector Analysis: Introduction, Application of Vector Multiplication, Triple Product, Differentiation Vectors, Field, Directional Derivative Gradient Bibliography: Boas, ML 2006. Mathematical Methods in the Physical Science, 3rd edition, John Wiley & Sons, New York.	4%
6	 Students master wave knowledge and modern physics to identify the properties of a relevant simple physical system Students are able to formulate problems of simple physical systems related to waves and modern physics into mathematical models using relevant symbolic and numerical language Students are able to use a scientific attitude, critical thinking and innovation skills to examine the problems of studying waves and modern physics in secondary schools with the help of mathematics 	Students are able to use line integrals to solve physics problems	Criteria: Quantitative Form of Assessment : Participatory Activities, Project Results Assessment / Product Assessment	Lectures, Discussions, Questions and Answers and Practice Questions 150 minutes	Lectures, Discussions, Questions and Answers, Watching Learning Videos and Practice Questions 150 minutes	Material: Vector Analysis: Line Integrals, Green Theorem in the Plane References: Boas, ML 2006. Mathematical Methods in the Physical Science, 3rd edition, John Wiley & Sons, New York.	4%

7	 Students master wave knowledge and modern physics to identify the relevant properties of a simple physical system Students are able to formulate problems of simple physical systems related to waves and modern physics into mathematical models using relevant symbolic and numerical language Students are able to use a scientific attitude, critical thinking and innovation skills to examine the problems of studying waves and modern physics in secondary schools with the help of mathematics 	 Students understand the Divergence theorem and its application in physics Students are able to solve problems related to waves and modern physics with vector concepts 	Criteria: Quantitative Form of Assessment : Participatory Activities, Project Results Assessment / Product Assessment	Lectures, Discussions, Questions and Answers and Practice Questions 150 minutes	Lectures, Discussions, Questions and Answers, Watching Learning Videos and Practice Questions 150 minutes	Material: Vector Analysis: The Divergence Theorem, The Curls and Stokes Theorem Reference: Boas, ML 2006. Mathematical Methods in the Physical Science, 3rd edition, John Wiley & Sons, New York.	4%
8	 Students master wave knowledge and modern physics to identify the relevant properties of a simple physical system Students are able to formulate problems of simple physical systems related to waves and modern physics into mathematical models using relevant symbolic and numerical language Students are able to use a scientific attitude, critical thinking and innovation skills to examine the problems of studying waves and modern physics in secondary schools with the help of mathematics 	Students are able to understand and solve USS questions that are relevant to the teaching material of linear algebra and vector analysis	Criteria: Quantitative Form of Assessment : Project Results Assessment / Product Assessment	100 Minute written test	100 minute written test	Material: UTS Material Reference: Boas, ML 2006. Mathematical Methods in the Physical Science, 3rd edition, John Wiley & Sons, New York.	20%
9	 Students are able to formulate simple physical system problems related to waves and modern physics into mathematical models using relevant symbolic/numerical language Students are able to use high-level thinking processes to form solutions from simple physical models related to waves and modern physics 	 Students understand tensor notation in Cartesian coordinates Students are able to perform tensor operations 	Criteria: Quantitative Form of Assessment : Participatory Activities, Project Results Assessment / Product Assessment	Lectures, Discussions, Questions and Answers and Practice Questions 150 minutes	Lectures, Discussions, Questions and Answers, Watching Learning Videos and Practice Questions 150 minutes	Material: Tensor Analysis: Introduction, Cartesian Tensors, Tensor Notation and Operations References: Boas, ML 2006. Mathematical Methods in the Physical Science, 3rd edition, John Wiley & Sons, New York.	3%

10	 Students are able to formulate simple physical system problems related to waves and modern physics into mathematical models using relevant symbolic/numerical language Students are able to use high-level thinking processes to form solutions from simple physical models related to waves and modern physics 	Students understand the concepts of inertia tensor and Kronecker delta	Criteria: Quantitative Form of Assessment : Participatory Activities, Project Results Assessment / Product Assessment	Lectures, Discussions, Questions and Answers and Practice Questions 150 minutes	Lectures, Discussions, Questions and Answers, Watching Learning Videos and Practice Questions 150 minutes	Material: Tensor Analysis: Inertia Tensor, Kronecker Delta and Levi- Civita Symbol, Pseudovectors and Pseudotensors References: Boas, ML 2006. Mathematical Methods in the Physical Science, 3rd edition, John Wiley & Sons, New York.	4%
11	 Students are able to formulate simple physical system problems related to waves and modern physics into mathematical models using relevant symbolic/numerical language Students are able to use high-level thinking processes to form solutions from simple physical models related to waves and modern physics 	 Students understand curvilinear coordinates Students can perform vector operations on curvilinear coordinates 	Criteria: Quantitative Form of Assessment : Participatory Activities, Project Results Assessment / Product Assessment	Lectures, Discussions, Questions and Answers and Practice Questions	Lectures, Discussions, Questions and Answers, Watching Learning Videos and Practice Questions	Material: Tensor Analysis: More about Applications, Curvilinear Coordinates, Vector Operators in Orthogonal Curvilinear Coordinates Bibliography: Boas, ML 2006. Mathematical Methods in the Physical Science, 3rd edition, John Wiley & Sons, New York.	4%
12	 Students are able to formulate simple physical system problems related to waves and modern physics into mathematical models using relevant symbolic/numerical language Students are able to use high-level thinking processes to form solutions from simple physical models related to waves and modern physics 	 Students understand the form of analytical functions Students can do integral contours 	Criteria: Quantitative Form of Assessment : Participatory Activities, Project Results Assessment / Product Assessment	Lectures, Discussions, Questions and Answers and Practice Questions 150 minutes	Lectures, Discussions, Questions and Answers, Watching Learning Videos and Practice Questions 150 minutes	Material: Functions of A Complex Variable: Analytic Function, Contour Integral Bibliography: Boas, ML 2006. Mathematical Methods in the Physical Science, 3rd edition, John Wiley & Sons, New York.	3%
13	 Students are able to formulate simple physical system problems related to waves and modern physics into mathematical models using relevant symbolic/numerical language Students are able to use high-level thinking processes to form solutions from simple physical models related to waves and modern physics 	 Students understand the Laurent series Students understand the residue theorem 	Criteria: Quantitative Form of Assessment : Participatory Activities, Project Results Assessment / Product Assessment	Lectures, Discussions, Questions and Answers and Practice Questions 150 minutes	Lectures, Discussions, Questions and Answers, Watching Learning Videos and Practice Questions 150 minutes	Material: Functions of A Complex Variable: Laurent Series, The Residue Theorem Bibliography: Boas, ML 2006. Mathematical Methods in the Physical Science, 3rd edition, John Wiley & Sons, New York.	3%

14	 Students are able to formulate simple physical system problems related to waves and modern physics into mathematical models using relevant symbolic/numerical language Students are able to use high-level thinking processes to form solutions from simple physical models related to waves and modern physics 	 Students can determine residues using several methods Students understand the mapping process 	Criteria: Quantitative Form of Assessment : Participatory Activities, Project Results Assessment / Product Assessment	Lectures, Discussions, Questions and Answers and Practice Questions 150 minutes	Lectures, Discussions, Questions and Answers, Watching Learning Videos and Practice Questions 150 minutes	Material: Functions of A Complex Variable: Methods of Finding Residues, The Point at Infinity; Residues at Infinity, Mapping Bibliography: Boas, ML 2006. Mathematical Methods in the Physical Science, 3rd edition, John Wiley & Sons, New York.	4%
15	 Students are able to formulate simple physical system problems related to waves and modern physics into mathematical models using relevant symbolic/numerical language Students are able to use high-level thinking processes to form solutions from simple physical models related to waves and modern physics 	Students are able to apply the concept of complex variable functions to solve problems in the field of physics	Criteria: Quantitative Form of Assessment : Participatory Activities, Project Results Assessment / Product Assessment	Lectures, Discussions, Questions and Answers and Practice Questions 150 minutes	Lectures, Discussions, Questions and Answers, Watching Learning Videos and Practice Questions 150 minutes	Material: Functions of A Complex Variable: Some Applications of Conformal Mapping References: <i>Boas, ML</i> 2006. <i>Mathematical</i> <i>Methods in the</i> <i>Physical</i> <i>Science, 3rd</i> <i>edition, John</i> <i>Wiley & Sons,</i> <i>New York.</i>	4%
16	 Students are able to formulate simple physical system problems related to waves and modern physics into mathematical models using relevant symbolic/numerical language Students are able to use high-level thinking processes to form solutions from simple physical models related to waves and modern physics 	Students are able to understand and apply teaching material about linear algebra, vector analysis, tensor analysis and complex variable functions to solve physics problems	Criteria: Quantitative Form of Assessment : Project Results Assessment / Product Assessment	Presentation of Project Results 25 minutes	Presentation of Project Results 25 minutes	Material: UTS Material Reference: Boas, ML 2006. Mathematical Methods in the Physical Science, 3rd edition, John Wiley & Sons, New York.	30%

Evaluation Percentage Recap: Project Based Learning

No	Evaluation	Percentage
1.	Participatory Activities	26.5%
2.	Project Results Assessment / Product Assessment	73.5%
		100%

Notes

- 1. Learning Outcomes of Study Program Graduates (PLO Study Program) are the abilities possessed by each Study Program graduate which are the internalization of attitudes, mastery of knowledge and skills according to the level of their study program obtained through the learning process.
 The PLO imposed on courses are several learning outcomes of study program graduates (CPL-Study Program) which are
- used for the formation/development of a course consisting of aspects of attitude, general skills, special skills and knowledge.
- 3. Program Objectives (PO) are abilities that are specifically described from the PLO assigned to a course, and are specific to the study material or learning materials for that course.
- 4. Subject Sub-PO (Sub-PO) is a capability that is specifically described from the PO that can be measured or observed and is the final ability that is planned at each learning stage, and is specific to the learning material of the course.
- Indicators for assessing ability in the process and student learning outcomes are specific and measurable statements that 5. identify the ability or performance of student learning outcomes accompanied by evidence.

- 6. Assessment Criteria are benchmarks used as a measure or measure of learning achievement in assessments based on predetermined indicators. Assessment criteria are guidelines for assessors so that assessments are consistent and unbiased. Criteria can be quantitative or qualitative.
- 7. Forms of assessment: test and non-test.
- 8. Forms of learning: Lecture, Response, Tutorial, Seminar or equivalent, Practicum, Studio Practice, Workshop Practice, Field Practice, Research, Community Service and/or other equivalent forms of learning.
- 9. Learning Methods: Small Group Discussion, Role-Play & Simulation, Discovery Learning, Self-Directed Learning,
- Cooperative Learning, Collaborative Learning, Contextual Learning, Project Based Learning, and other equivalent methods. 10. Learning materials are details or descriptions of study materials which can be presented in the form of several main points and sub-topics.
- 11. The assessment weight is the percentage of assessment of each sub-PO achievement whose size is proportional to the level of difficulty of achieving that sub-PO, and the total is 100%.
- 12. TM=Face to face, PT=Structured assignments, BM=Independent study.