

## Universitas Negeri Surabaya Faculty of Mathematics and Natural Sciences Undergraduate Physics Study Program

Document Code

## SEMESTER LEARNING PLAN

| Courses                        |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CODE                                                                            |                                                      |                                                                        | Co                                          | Course Family                                     |                                              | у                              |                                           | Credit Weight                               |                                               | S                                                                       | EMEST                                             | FER                                                   | Co<br>Da                                            | mpilation<br>te                             |                                                        |
|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------|---------------------------------------------------|----------------------------------------------|--------------------------------|-------------------------------------------|---------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------|---------------------------------------------|--------------------------------------------------------|
| Solid State P                  | hysics                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 452010308                                                                       | 2                                                    | Compulsory St<br>Program Subje                                         |                                             |                                                   | tudy<br>ects                                 | ŀ                              | T=3                                       | P=0                                         | ECTS=4.                                       | 77                                                                      | 6                                                 | 6                                                     | Ma<br>202                                           | urch 21,<br>21                              |                                                        |
| AUTHORIZAT                     | TION                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SP Develo                                                                       | per                                                  |                                                                        |                                             |                                                   |                                              | Co                             | urse                                      | Clus                                        | ter Co                                        | ordinator                                                               | S                                                 | tudy P                                                | rogram                                              | Coor                                        | dinator                                                |
|                                |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Prof. Dr. Munasir, S.Si., M.Si. & Dr. Evi<br>Suaebah, M.Si., M.Eng.             |                                                      |                                                                        | Pro                                         | Prof. Dr. Munasir, S.Si., M.Si.                   |                                              |                                |                                           | Prof. Dr. Munasir, S.Si., M.Si.             |                                               | Si., M.Si.                                                              |                                                   |                                                       |                                                     |                                             |                                                        |
| Learning<br>model              | Case Studies                                                                                                                                                   | Case Studies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                 |                                                      |                                                                        |                                             |                                                   |                                              |                                |                                           |                                             |                                               |                                                                         |                                                   |                                                       |                                                     |                                             |                                                        |
| Program                        | PLO study program that is charged to the course                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                 |                                                      |                                                                        |                                             |                                                   |                                              |                                |                                           |                                             |                                               |                                                                         |                                                   |                                                       |                                                     |                                             |                                                        |
| Outcomes                       | PLO-7                                                                                                                                                          | Comm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nunicate their                                                                  | ideas                                                | and/or res                                                             | earch                                       | n resul                                           | lts in a                                     | cade                           | mic w                                     | riting                                      | and s                                         | speaking e                                                              | ffectiv                                           | vely.                                                 |                                                     |                                             |                                                        |
| (PLO)                          | PLO-12                                                                                                                                                         | Have                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | the ability to i                                                                | improv                                               | e their kno                                                            | wled                                        | ge and                                            | d be al                                      | ole to                         | conti                                     | nue t                                       | heir s                                        | tudies to a                                                             | highe                                             | er level.                                             |                                                     |                                             |                                                        |
|                                | Program Object                                                                                                                                                 | tives (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PO)                                                                             |                                                      |                                                                        |                                             |                                                   |                                              |                                |                                           |                                             |                                               |                                                                         |                                                   |                                                       |                                                     |                                             |                                                        |
|                                | PO - 1                                                                                                                                                         | PO-1 Review and present the results of the study of Solid State Physics material which includes: crystal structure of solid materials, crystal bonds; solid material structure test methods (XRD, ND, ED, etc.); phonon vibrations (gel. optic & acoustic) and thermal properties of solid materials; electrical properties of solid materials: (conductors-Drude's theory & Ohm's law, semiconductors-holes/electrons and superconductors-electron pairs) and energy bands; semiconductor (Si-crystalline, Si-amorphous, organic); optical properties of solid materials; magnetic properties of solid materials; dielectric materials, capacitors and supercapacitors; Superconductivity and superconducting materials; from various references. |                                                                                 |                                                      |                                                                        |                                             |                                                   |                                              |                                |                                           |                                             |                                               |                                                                         |                                                   |                                                       |                                                     |                                             |                                                        |
|                                | PO - 2                                                                                                                                                         | Produc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ce a paper on                                                                   | n the re                                             | esults of a                                                            | Solid                                       | State                                             | Physic                                       | cs stu                         | udy ar                                    | nd pr                                       | esent                                         | it.                                                                     |                                                   |                                                       |                                                     |                                             |                                                        |
|                                | PO - 3                                                                                                                                                         | Produc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ce project wo                                                                   | rk rela                                              | ated to solic                                                          | l state                                     | e phys                                            | sics ma                                      | ateria                         | l and                                     | pres                                        | ent it                                        |                                                                         |                                                   |                                                       |                                                     |                                             |                                                        |
|                                | PLO-PO Matrix                                                                                                                                                  | [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                 |                                                      |                                                                        |                                             |                                                   |                                              |                                |                                           |                                             |                                               |                                                                         |                                                   |                                                       |                                                     |                                             |                                                        |
|                                |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                 |                                                      |                                                                        |                                             |                                                   |                                              |                                |                                           |                                             |                                               |                                                                         |                                                   |                                                       |                                                     |                                             |                                                        |
|                                |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | P.0                                                                             |                                                      | PLO-7                                                                  |                                             | PL                                                | 0-12                                         |                                |                                           |                                             |                                               |                                                                         |                                                   |                                                       |                                                     |                                             |                                                        |
|                                |                                                                                                                                                                | PO-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                 |                                                      |                                                                        |                                             |                                                   |                                              |                                |                                           |                                             |                                               |                                                                         |                                                   |                                                       |                                                     |                                             |                                                        |
|                                |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PO-2                                                                            |                                                      |                                                                        |                                             |                                                   |                                              |                                |                                           |                                             |                                               |                                                                         |                                                   |                                                       |                                                     |                                             |                                                        |
|                                |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PO-3                                                                            |                                                      |                                                                        |                                             |                                                   |                                              |                                |                                           |                                             |                                               |                                                                         |                                                   |                                                       |                                                     |                                             |                                                        |
|                                |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                 |                                                      |                                                                        |                                             |                                                   |                                              |                                |                                           |                                             |                                               |                                                                         |                                                   |                                                       |                                                     |                                             |                                                        |
|                                | PO Matrix at th                                                                                                                                                | o ond (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | of oach loar                                                                    | ning                                                 | ctago (Su                                                              |                                             | 2                                                 |                                              |                                |                                           |                                             |                                               |                                                                         |                                                   |                                                       |                                                     |                                             |                                                        |
|                                |                                                                                                                                                                | e enu v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ji each leal                                                                    | ming                                                 | stage (Su                                                              | J-FC                                        | <i>י</i> ן                                        |                                              |                                |                                           |                                             |                                               |                                                                         |                                                   |                                                       |                                                     |                                             |                                                        |
|                                |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DO                                                                              |                                                      |                                                                        |                                             |                                                   |                                              |                                |                                           | 14/2                                        |                                               |                                                                         |                                                   |                                                       |                                                     |                                             |                                                        |
|                                |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | P.0                                                                             |                                                      |                                                                        |                                             | -                                                 |                                              | -                              |                                           | VVe                                         | ек                                            |                                                                         | 4.0                                               | 10                                                    |                                                     | 45                                          | 10                                                     |
|                                |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                 | 1                                                    | 2 3                                                                    | 4                                           | 5                                                 | 6                                            | 1                              | 8                                         | 9                                           | 1                                             | 0 11                                                                    | 12                                                | 13                                                    | 14                                                  | 15                                          | 16                                                     |
|                                |                                                                                                                                                                | PO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -1                                                                              |                                                      |                                                                        |                                             |                                                   |                                              |                                |                                           |                                             |                                               |                                                                         |                                                   |                                                       |                                                     |                                             |                                                        |
|                                |                                                                                                                                                                | PO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -2                                                                              |                                                      |                                                                        |                                             |                                                   |                                              |                                |                                           | _                                           |                                               |                                                                         |                                                   |                                                       |                                                     |                                             |                                                        |
|                                |                                                                                                                                                                | PO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -3                                                                              |                                                      |                                                                        |                                             |                                                   |                                              |                                |                                           |                                             |                                               |                                                                         |                                                   |                                                       |                                                     |                                             |                                                        |
|                                |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                 |                                                      |                                                                        |                                             |                                                   |                                              |                                |                                           |                                             |                                               |                                                                         |                                                   |                                                       |                                                     |                                             |                                                        |
| Short<br>Course<br>Description | Examining Solid<br>(XRF, SEM, TEM<br>Semiconductors,<br>level, Ef, Carrier<br>Effect; Light Emit                                                               | State P<br>I, AFM);<br>insulato<br>concent<br>ting Dio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Physics mater<br>Crystal Bond<br>ors and metal<br>tration equati<br>de; Paramag | rial, wi<br>d; Grill<br>ls, The<br>ions, E<br>netism | hich includ<br>le Vibration<br>e concept o<br>Donors and<br>n, Diamagn | es: C<br>; Eins<br>of effe<br>acce<br>etism | crystal<br>stein N<br>ective<br>eptors<br>n, Ferr | Struct<br>Aodel;<br>mass;<br>both p<br>omagr | ture;<br>Deby<br>Pure<br>prese | X Ra<br>/e Mo<br>e Sen<br>nt; pn<br>n, Su | y Dif<br>del, l<br>nicon<br>i junc<br>perco | fractio<br>Band<br>ductor<br>tion, p<br>nduct | on, Neutror<br>Structure a<br>rs and Imp<br>on Junctior<br>tors, Dielec | n Diffr<br>and El<br>urities<br>n Dioc<br>ctrics, | action,<br>lectrical<br>s: Dono<br>le; Elec<br>Superc | Electro<br>Proper<br>rs and<br>ctrical C<br>apacito | n Diffr<br>ties of<br>Accept<br>onduc<br>rs | action and<br>Materials:<br>tors, Fermi<br>tance, Hall |
| References                     | Main :                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                 |                                                      |                                                                        |                                             |                                                   |                                              |                                |                                           |                                             |                                               |                                                                         |                                                   | -                                                     |                                                     |                                             |                                                        |
|                                | <ol> <li>Kittel, Cł</li> <li>Ashcroft</li> <li>Ali Omar</li> <li>Ali Omar</li> <li>Ali On ar</li> <li>Christma</li> <li>H.M. Ros</li> <li>M. S. Dro</li> </ol> | Main :         1. Kittel, Charles . 1996 . Introduction to Solid State Physics 7th. John Wiley & Sons, New York.         2. Ashcroft and Mermin . 1976. Solid State Physics . Sauders College, Philadelphia.         3. Ali Omar, M . 1975. Elementary Solid State Physics: Principle and Applications . Addison Wesley Publication. Comp. USA.         4. Ali Omar, M . 1977. Fundamental of Solid State Physics . Addison Wesley Publication. Comp. USA.         5. Christman . 1989. Introduction to Solid State Physics . John Wiley & Sons, USA.         6. H.M. Rosenberg . 1987. The Solid State Physics Third Edition . Oxford Science Publication, USA.         7. M. S. Dresselhaus, 2001, Solid state Physics, MIT, USA.                |                                                                                 |                                                      |                                                                        |                                             |                                                   |                                              |                                |                                           |                                             |                                               |                                                                         |                                                   |                                                       |                                                     |                                             |                                                        |
|                                | Supporters:                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                 |                                                      |                                                                        |                                             |                                                   |                                              |                                |                                           |                                             |                                               |                                                                         |                                                   |                                                       |                                                     |                                             |                                                        |
|                                |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                 |                                                      |                                                                        |                                             |                                                   |                                              |                                |                                           |                                             |                                               |                                                                         |                                                   |                                                       |                                                     |                                             |                                                        |
| I                              | l                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                 |                                                      |                                                                        |                                             |                                                   |                                              |                                |                                           |                                             |                                               |                                                                         |                                                   |                                                       |                                                     |                                             |                                                        |

|                     | 1. □ Sze, S<br>2. □ Reka F<br>3. □ Anders                                                                  | .M. 1985. Semiconducto<br>Rio, S., dan Iida, Masamo<br>son, J.C., Leaver. K.D., F                                                                                                                                                                                                                                                                                                                                                                                | r Devices (Physics and<br>pri1982. Fisika dan Tel<br>Rawlings, R.D., and Ale                                                                                                                                                      | d Technology). N<br>knologi Semikon<br>exander, J.M. 19                  | lew York: John Wiley & S<br>duktor. Jakarta: P.T. Pra<br>90. Materials Science, 44 | Sons: Lattice Press.<br>dnya Paramita.<br>th Ed. London: Chapr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nan & Hall.              |
|---------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| Support<br>lecturer | ting Prof. Dr. Munasir<br>Dr. Fitriana, S.Si.                                                              | , S.Si., M.Si.                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                   |                                                                          |                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          |
| Week-               | Final abilities of<br>each learning<br>stage                                                               | Evalua                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ation                                                                                                                                                                                                                             | He<br>Lear<br>Studer<br>[Es                                              | Ip Learning,<br>ning methods,<br>nt Assignments,<br>stimated time]                 | Learning<br>materials                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Assessment<br>Weight (%) |
|                     | (SuĎ-PO)                                                                                                   | Indicator                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Criteria & Form                                                                                                                                                                                                                   | Offline(<br>offline)                                                     | Online ( online )                                                                  | [ References ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |
| (1)                 | (2)                                                                                                        | (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (4)                                                                                                                                                                                                                               | (5)                                                                      | (6)                                                                                | (7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (8)                      |
| 1                   | Able to analyze the<br>crystal structure of<br>solid materials and<br>present them                         | Describe the task<br>given                                                                                                                                                                                                                                                                                                                                                                                                                                       | Criteria:<br>Full marks will be<br>given if all<br>questions can be<br>answered correctly<br>& satisfactorily<br>Form of<br>Assessment :<br>Participatory<br>Activities, Project<br>Results Assessment<br>/ Product<br>Assessment | Presentations,<br>discussions<br>and questions<br>and answers,<br>3 X 50 | Presentations,<br>discussions and<br>questions and<br>answers,<br>3 x 50           | Material: Crystal<br>structure of solid<br>materials<br>Reference:<br>Kittel, Charles .<br>1996 .<br>Introduction to<br>Solid State<br>Physics 7th. John<br>Wiley & Sons,<br>New York.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2%                       |
| 2                   | Able to analyze<br>solid material<br>structure analysis<br>material (XRD,<br>XRF, ND, etc.) and<br>present | <ol> <li>Producing a<br/>paper on the<br/>results of a study<br/>of Solid State<br/>Physics – Crystal<br/>Structure;</li> <li>Able to present a<br/>paper on the<br/>results of a study<br/>of Solid State<br/>Physics - Crystal<br/>Structure.</li> <li>Determine the<br/>number of nearby<br/>atoms, crystal<br/>density (r): linear<br/>density, crystal<br/>density, crystal<br/>density factor<br/>(APF)</li> </ol>                                         | Criteria:<br>Full marks will be<br>given if all<br>questions can be<br>answered correctly<br>& satisfactorily<br>Form of<br>Assessment :<br>Participatory<br>Activities, Project<br>Results Assessment<br>/ Product<br>Assessment | Presentations,<br>discussions<br>and questions<br>and answers.<br>3 X 50 | Presentations,<br>discussions and<br>questions and<br>answers.<br>3 x 50           | Material: Crystal         structure of solid         materials         Reference:         Kittel, Charles.         1996.         Introduction to         Solid State         Physics 7th. John         Wiley & Sons,         Wew York.         Material: crystal         lattice, Bravais         lattice, crystal         structure         analysis, simple         crystal structure,         field.         Reference:         Ashcroft and         Mermin. 1976.         Solid State         Physics. Sauders         College,         Philadelphia.                                                                                                                                               | 2%                       |
| 3                   | Able to analyze<br>Crystal Bond<br>material and<br>present                                                 | <ol> <li>Producing<br/>Papers on the<br/>results of Solid<br/>State Physics<br/>studies - Analysis<br/>of Diffraction<br/>Data using X-Ray<br/>Diffraction,<br/>Electron<br/>Diffraction;</li> <li>Able to present a<br/>paper on the<br/>results of a Solid<br/>State Physics<br/>study - Analysis<br/>of Diffraction<br/>Data using X-Ray<br/>Diffraction,<br/>Neutron<br/>Diffraction,<br/>Electron<br/>Diffraction,<br/>Electron<br/>Diffraction;</li> </ol> | Criteria:<br>Full marks will be<br>given if all<br>questions can be<br>answered correctly<br>& satisfactorily<br>Form of<br>Assessment :<br>Participatory<br>Activities, Project<br>Results Assessment<br>/ Product<br>Assessment | Presentations,<br>discussions<br>and questions<br>and answers.<br>3 X 50 | Presentations,<br>discussions and<br>questions and<br>answers.<br>3 x 50           | Material: X-ray         diffraction         analysis         References:         Kittel, Charles.         1996         Introduction to         Solid State         Physics 7th. John         Wiley & Sons,         New York.         Material:         Electron         diffraction         Reader:         Christman . 1989.         Introduction to         Solid State         Physics. John         Wiley & Sons,         USA.         Material:         Neutron         diffraction         References:         Anderson, JC,         Leaver. KD,         Rawlings, RD,         and Alexander,         JM 1990.         Materials         Science, 4th Ed.         London:         Chapman & Hall. | 3%                       |

| 4 | Able to produce<br>and present papers<br>on the results of<br>studies on Solid<br>State Physics -<br>Crystal Bonds.                                                                                                                                       | <ol> <li>Producing papers<br/>on the results of<br/>studies on Solid<br/>State Physics –<br/>Crystal Bonds;</li> <li>Able to present a<br/>paper on the<br/>results of a study<br/>of Solid State<br/>Physics - Crystal<br/>Bonds.</li> </ol>                                                                                                                                                                | Criteria:<br>Full marks will be<br>given if all<br>questions can be<br>answered correctly<br>& satisfactorily<br>Form of<br>Assessment :<br>Participatory<br>Activities, Project<br>Results Assessment<br>/ Product<br>Assessment | Presentations,<br>discussions<br>and questions<br>and answers.<br>3 X 50 | Presentations,<br>discussions and<br>questions and<br>answers.<br>3 x 50 | Material: Crystal<br>bonds of solid<br>materials<br>Reference:<br>Kittel, Charles .<br>1996 .<br>Introduction to<br>Solid State<br>Physics 7th. John<br>Wiley & Sons,<br>New York.                                                                                                                                                                                                                                             | 3% |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 5 | Able to produce<br>and present papers<br>on the results of<br>studies on Solid<br>State Physics –<br>Lattice Vibrations                                                                                                                                   | Producing a paper<br>on the results of a<br>study of Solid State<br>Physics – Lattice<br>Vibrations; Able to<br>present a paper on<br>the results of a study<br>of Solid State<br>Physics - Lattice<br>Vibrations.                                                                                                                                                                                           | Criteria:<br>Grades are given<br>if all tasks have<br>been completed<br>Form of<br>Assessment :<br>Participatory<br>Activities, Project<br>Results Assessment<br>/ Product<br>Assessment                                          | Presentations,<br>discussions<br>and questions<br>and answers.<br>3 X 50 | Presentations,<br>discussions and<br>questions and<br>answers.<br>3x50   | Material: Lattice<br>vibrations<br>Reference:<br>Kittel, Charles .<br>1996 .<br>Introduction to<br>Solid State<br>Physics 7th. John<br>Wiley & Sons,<br>New York.                                                                                                                                                                                                                                                              | 3% |
| 6 | Able to produce<br>and present papers<br>on the results of<br>Solid State Physics<br>studies - Einstein<br>Model and Debye<br>Model.                                                                                                                      | <ol> <li>Producing papers<br/>on the results of<br/>studies on Solid<br/>State Physics –<br/>Einstein's Model<br/>and Debye's<br/>Model; Able to<br/>present papers<br/>on the results of<br/>solid state<br/>physics studies -<br/>Einstein's model<br/>and Debye's<br/>model.</li> <li>Able to present<br/>solid state<br/>physics studies<br/>related to the<br/>Einstein and<br/>Debye models</li> </ol> | Criteria:<br>Grades are given<br>if all assignments<br>have been<br>completed<br>Form of<br>Assessment :<br>Participatory<br>Activities, Project<br>Results Assessment<br>/ Product<br>Assessment                                 | Presentations,<br>discussions<br>and questions<br>and answers.<br>3 X 50 | Presentations,<br>discussions and<br>questions and<br>answers.<br>3 x50  | Material: Heat<br>capacity<br>according to:<br>Einstein Model<br>and Debye Model<br>Reference:<br>Kittel, Charles.<br>1996.<br>Introduction to<br>Solid State<br>Physics 7th. John<br>Wiley & Sons,<br>New York.                                                                                                                                                                                                               | 3% |
| 7 | Able to produce<br>and present papers<br>on the results of<br>studies on Solid<br>State Physics -<br>Band Structure and<br>Electrical<br>Properties of<br>Materials:<br>Semiconductors,<br>insulators and<br>metals, The<br>concept of effective<br>mass. | Produce papers on<br>the results of studies<br>on Solid State<br>Physics – Band<br>Structure and<br>Electrical Properties<br>of Materials:<br>Semiconductors,<br>insulators and<br>metals, The concept<br>of effective mass;<br>Able to present a<br>paper on the results<br>of a study of Solid<br>State Physics -<br>Crystal Structure.                                                                    | Criteria:<br>Full marks will be<br>given if all<br>questions can be<br>answered correctly<br>& satisfactorily<br>Form of<br>Assessment :<br>Participatory<br>Activities, Project<br>Results Assessment<br>/ Product<br>Assessment | Presentations,<br>discussions<br>and questions<br>and answers.<br>3 X 50 | Presentations,<br>discussions and<br>questions and<br>answers.<br>3 x 50 | Material:<br>Intrinsic, extrinsic<br>semiconductors<br>(donor acceptor)<br>References:<br>Sze, SM 1985.<br>Semiconductor<br>Devices (Physics<br>and Technology).<br>New York: John<br>Wiley & Sons:<br>Lattice Press.<br>Material: Silicon<br>semiconductor<br>technology<br>References:<br>Reka Rio, S., and<br>lida, Masamori<br>1982.<br>Semiconductor<br>Physics and<br>Technology.<br>Jakarta: PT<br>Pradnya<br>Paramita. | 3% |

| 8 | A combination of meetings 1-7                                                                                                                                                                                                                                          | A combination of meetings 1-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Criteria:<br>Full marks will be<br>given if the<br>questions have<br>been completed<br>completely and<br>correctly<br>Form of<br>Assessment :<br>Portfolio<br>Assessment | Doing 3 X 50<br>UTS (written<br>test)<br>questions                      | Doing 3 X 50 UTS<br>(written test) questions                         | Material: Crystal<br>structure of solid<br>materials<br>Reference:<br>Kittel, Charles.<br>1996.<br>Introduction to<br>Solid State<br>Physics 7th. John<br>Wiley & Sons,<br>New York.<br>Material: X-ray<br>diffraction<br>analysis<br>References:<br>Kittel, Charles.<br>1996.<br>Introduction to<br>Solid State<br>Physics 7th. John<br>Wiley & Sons,<br>New York.<br>Material: Crystal<br>bonds of solid<br>materials<br>Reference:<br>Kittel, Charles.<br>1996.<br>Introduction to<br>Solid State<br>Physics 7th. John<br>Wiley & Sons,<br>New York.<br>Material:<br>Introduction to<br>Solid State<br>Physics 7th. John<br>Wiley & Sons,<br>New York.<br>Material:<br>Intrinsic, extrinsic<br>semiconductors<br>(donor acceptor)<br>References:<br>Sze, SM 1985.<br>Semiconductor<br>Devices (Physics<br>and Technology).<br>New York: John<br>Wiley & Sons:<br>Lattice Press.<br>Material: Heat<br>capacity<br>according to:<br>Einstein Model<br>and Debye Model<br>Reference:<br>Kittel, Charles .<br>1996.<br>Introduction to<br>Solid State<br>Physics 7th. John | 30% |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 9 | Able to produce<br>and present papers<br>on the results of<br>Solid State Physics<br>studies - Pure and<br>Impurity<br>Semiconductors:<br>Donors and<br>Acceptors, Fermi<br>level, Ef, Carrier<br>concentration<br>equations, Donors<br>and acceptors both<br>present, | <ol> <li>Produce a paper<br/>on the results of<br/>a study on Solid<br/>State Physics -<br/>Pure and Impure<br/>Semiconductors:<br/>Donors and<br/>Acceptors, Fermi<br/>level, Ef, Carrier<br/>concentration<br/>equations,<br/>Donors and<br/>acceptors both<br/>present;</li> <li>Able to present a<br/>paper on the<br/>results of a Solid<br/>State Physics<br/>study - Pure and<br/>Impure<br/>Semiconductors:<br/>Donors and<br/>Acceptors, Fermi<br/>level, Ef, Carrier<br/>concentration<br/>equations,<br/>Donors and<br/>acceptors both<br/>present.</li> </ol> | Criteria:<br>Full marks will be<br>given if the<br>answers to all<br>questions are<br>correct<br>Form of<br>Assessment :<br>Participatory<br>Activities                  | Presentations,<br>discussions<br>and questions<br>and answers<br>3 X 50 | Presentations,<br>discussions and<br>questions and answers<br>3 x 50 | Wiley & Sons,<br>New York.<br>Material: Fermi<br>level, and PN<br>connection<br>References:<br>Sze, SM 1985.<br>Semiconductor<br>Devices (Physics<br>and Technology).<br>New York: John<br>Wiley & Sons:<br>Lattice Press.<br>Material: Donor-<br>acceptor level<br>References:<br>Sze, SM 1985.<br>Semiconductor<br>Devices (Physics<br>and Technology).<br>New York: John<br>Wiley & Sons:<br>Lattice Press.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3%  |

| 10 | Able to produce<br>and present papers<br>on the results of<br>studies on Solid<br>State Physics - pn<br>junctions, pn<br>junction diodes.       | <ol> <li>Produce papers<br/>on the results of<br/>studies on Solid<br/>State Physics –<br/>pn junctions, pn<br/>junction diodes;</li> <li>Able to present a<br/>paper on the<br/>results of a study<br/>on Solid State<br/>Physics - pn<br/>junction, pn<br/>junction diode.</li> </ol>                              | Criteria:<br>Full marks will be<br>given if all the<br>answers to the<br>questions are<br>correct<br>Form of<br>Assessment :<br>Participatory<br>Activities, Project<br>Results Assessment<br>/ Product<br>Assessment                  | Presentations,<br>discussions<br>and questions<br>and answers.<br>3 X 50 | Presentations,<br>discussions and<br>questions and<br>answers.<br>3 x 50 | Material: PN<br>connections in<br>semiconductors<br>References:<br>Reka Rio, S., and<br>lida, Masamori<br>1982.<br>Semiconductor<br>Physics and<br>Technology.<br>Jakarta: PT<br>Pradnya<br>Paramita.<br>Material: PN<br>junction diode<br>References:<br>Sze, SM 1985.<br>Semiconductor<br>Devices (Physics<br>and Technology).<br>New York: John<br>Wiley & Sons:<br>Lattice Press.<br>Material: Diode<br>laser<br>Reference:<br>Sze, SM 1985.<br>Semiconductor<br>Devices (Physics<br>and Technology).<br>New York: John<br>Wiley & Sons:<br>Lattice Press. | 3% |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 11 | Able to produce<br>and present papers<br>on the results of<br>studies on Solid<br>State Physics -<br>Electrical<br>Conductance, Hall<br>Effect. | <ol> <li>Produce papers<br/>on the results of<br/>studies on Solid<br/>State Physics –<br/>electrical<br/>properties and<br/>optical<br/>properties;</li> <li>Able to present a<br/>paper on the<br/>results of a study<br/>on Solid State<br/>Physics -<br/>Electrical<br/>Conductance,<br/>Hall Effect.</li> </ol> | Criteria:<br>Full marks will be<br>given if the<br>questions have<br>been completed<br>completely and<br>correctly<br>Form of<br>Assessment :<br>Participatory<br>Activities, Project<br>Results Assessment<br>/ Product<br>Assessment | Presentations,<br>discussions<br>and questions<br>and answers.<br>3 X 50 | Presentations,<br>discussions and<br>questions and<br>answers.<br>3 x 50 | Material: Hall<br>Effect<br>References:<br>Szeniconductor<br>Devices (Physics<br>and Technology).<br>New York: John<br>Wiley & Sons:<br>Lattice Press.<br>Material: Hall<br>Effect<br>References:<br>Reka Rio, S., and<br>Iida, Masamori<br>1982.<br>Semiconductor<br>Physics and<br>Technology.<br>Jakarta: PT<br>Pradnya<br>Paramita.                                                                                                                                                                                                                        | 3% |
| 12 | Able to produce<br>and present papers<br>on the results of<br>studies on Solid<br>State Physics -<br>Light Emitting<br>Diodes.                  | <ol> <li>Producing a<br/>paper on the<br/>results of a study<br/>of Solid State<br/>Physics - Light<br/>Emitting Diodes;</li> <li>Able to present a<br/>paper on the<br/>results of a study<br/>on Solid State<br/>Physics - Light<br/>Emitting Diodes.</li> </ol>                                                   | Criteria:<br>Full marks will be<br>given if the<br>questions have<br>been completed<br>completely and<br>correctly<br>Form of<br>Assessment :<br>Participatory<br>Activities                                                           | Presentations,<br>discussions<br>and questions<br>and answers.<br>3 X 50 | Presentations,<br>discussions and<br>questions and<br>answers.<br>3 x 50 | Material:<br>Intrinsic, extrinsic<br>semiconductors<br>(donor acceptor)<br>References:<br>Kittel, Charles .<br>1996 .<br>Introduction to<br>Solid State<br>Physics 7th. John<br>Wiley & Sons,<br>New York.                                                                                                                                                                                                                                                                                                                                                     | 3% |

| 13 | Able to produce<br>and present papers<br>on the results of<br>Solid State Physics<br>studies –<br>Paramagnetism,<br>Diamagnetism,<br>Ferromagnetism. | <ol> <li>Producing<br/>Papers on the<br/>results of studies<br/>on Solid State<br/>Physics –<br/>Paramagnetism,<br/>Diamagnetism,</li> <li>Able to present<br/>papers on the<br/>results of studies<br/>on Solid State<br/>Physics -<br/>Paramagnetism,<br/>Diamagnetism,</li> </ol> | Criteria:<br>Full marks will be<br>given if the<br>questions have<br>been completed<br>completely and<br>correctly<br>Form of<br>Assessment :<br>Participatory<br>Activities, Project<br>Results Assessment<br>/ Product<br>Assessment | Presentations,<br>discussions<br>and questions<br>and answers.<br>3 X 50 | Presentations,<br>discussions and<br>questions and<br>answers.<br>3 x 50 | Matter: Magnetic<br>properties of solid<br>materials:<br>Paramagnetism,<br>Diamagnetism,<br>Ferromagnetism.<br>Reference:<br>Kittel, Charles .<br>1996 .<br>Introduction to<br>Solid State<br>Physics 7th. John<br>Wiley & Sons,<br>New York.<br>Matter: Magnetic<br>properties of solid<br>materials:<br>Paramagnetism,<br>Diamagnetism.<br>References: Ali<br>Omar, M. 1975.<br>Elementary Solid<br>State Physics:<br>Principles and<br>Applications.<br>Addison Wesley<br>Publications.<br>Comp. USA.<br>Matter: Magnetic<br>properties of solid<br>materials:<br>Paramagnetism,<br>Erromagnetism,<br>Ferromagnetism,<br>Bibliography:<br>Ashcroft and<br>Mermin . 1976.<br>Solid State<br>Physics. Sauders<br>College,<br>Philadelphia. | 3% |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 14 | Able to produce<br>and present papers<br>on the results of<br>studies on Solid<br>State Physics -<br>Superconductors                                 | <ol> <li>Produce papers<br/>on the results of<br/>FZP studies:<br/>Paramagnetism,<br/>Ferromagnetism;</li> <li>Able to present<br/>papers on the<br/>results of studies<br/>on Solid State<br/>Physics -<br/>Paramagnetism,<br/>Ferromagnetism.</li> </ol>                           | Criteria:<br>Full marks will be<br>given if the<br>questions have<br>been completed<br>completely and<br>correctly<br>Form of<br>Assessment :<br>Participatory<br>Activities                                                           | Presentations,<br>discussions<br>and questions<br>and answers.<br>3 X 50 | Presentations,<br>discussions and<br>questions and<br>answers.<br>3 x50  | Material:<br>Superconductivity<br>and<br>superconductors<br>Reference:<br>Christman . 1989.<br>Introduction to<br>Solid State<br>Physics. John<br>Wiley & Sons,<br>USA.<br>Material:<br>Superconductors<br>Reference:<br>Kittel, Charles .<br>1996 .<br>Introduction to<br>Solid State<br>Physics 7th. John<br>Wiley & Sons,<br>New York.                                                                                                                                                                                                                                                                                                                                                                                                   | 3% |
| 15 | Able to produce<br>and present papers<br>on the results of<br>studies on Solid<br>State Physics -<br>Dielectric Materials<br>and<br>supercapacitors  | <ol> <li>Producing papers<br/>on the results of<br/>studies on Solid<br/>State Physics -<br/>Superconductors;</li> <li>Able to present<br/>papers on the<br/>results of studies<br/>on Solid State<br/>Physics -<br/>Superconductors.</li> </ol>                                     | Criteria:<br>Full marks will be<br>given if the<br>questions have<br>been completed<br>completely and<br>correctly<br>Form of<br>Assessment :<br>Participatory<br>Activities                                                           | Presentations,<br>discussions<br>and questions<br>and answers.<br>3 X 50 | Presentations,<br>discussions and<br>questions and<br>answers.<br>3 x 50 | Material:<br>Dielectric<br>Materials and<br>supercapacitors<br>Reference:<br>Kittel, Charles.<br>1996.<br>Introduction to<br>Solid State<br>Physics 7th. John<br>Wiley & Sons,<br>New York.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3% |

| 16 | Combined 9-15<br>meetings | Able to do questions<br>correctly | Criteria:<br>The answer must<br>be correct<br>according to the<br>concept being<br>asked<br>Forms of<br>Assessment :<br>Participatory<br>Activities, Project<br>Results Assessment<br>/ Product<br>Assessment,<br>Portfolio<br>Assessment | UAS: spell 3 x<br>50 test<br>questions | Material: Heat<br>capacity<br>according to:<br>Einstein Model<br>and Debye Model<br>Reference:<br>Kittel, Charles .<br>1996 .<br>Introduction to<br>Solid State<br>Physics 7th. John<br>Wiley & Sons,<br>New York.<br>Material:<br>Intrinsic, extrinsic<br>semiconductors<br>(donor acceptor)<br>References:<br>Sze, SM 1985.<br>Semiconductor<br>Devices (Physics<br>and Technology).<br>New York: John<br>Wiley & Sons:<br>Lattice Press. | 30% |
|----|---------------------------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|    |                           |                                   |                                                                                                                                                                                                                                           |                                        | Material: PN<br>connection<br>Bibliography:<br>Reka Rio, S., and<br>lida, Masamori<br>1982.<br>Semiconductor<br>Physics and<br>Technology.<br>Jakarta: PT<br>Pradnya<br>Paramita.<br>Material: Laser<br>diode                                                                                                                                                                                                                               |     |
|    |                           |                                   |                                                                                                                                                                                                                                           |                                        | Sze, SM 1985.<br>Semiconductor<br>Devices (Physics<br>and Technology).<br>New York: John<br>Wiley & Sons:<br>Lattice Press.<br>Matter: magnetic<br>properties of solid<br>materials:                                                                                                                                                                                                                                                        |     |
|    |                           |                                   |                                                                                                                                                                                                                                           |                                        | paramagnetic,<br>diamagnetic and<br>ferromagnetic<br><b>Bibliography:</b><br><i>Kittel, Charles</i> .<br>1996.<br>Introduction to<br>Solid State<br>Physics 7th. John<br>Wiley & Sons,<br>New York.                                                                                                                                                                                                                                         |     |
|    |                           |                                   |                                                                                                                                                                                                                                           |                                        | Material:<br>Dielectric<br>materials and<br>supercapacitors<br>Reference:<br>Kittel, Charles .<br>1996 .<br>Introduction to<br>Solid State<br>Physics 7th. John<br>Wiley & Sons,<br>New York.                                                                                                                                                                                                                                               |     |
|    |                           |                                   |                                                                                                                                                                                                                                           |                                        | Material:<br>Superconductors<br>Reference:<br>Kittel, Charles .<br>1996 .<br>Introduction to<br>Solid State<br>Physics 7th. John<br>Wiley & Sons,<br>New York.                                                                                                                                                                                                                                                                              |     |

| 1. | Participatory Activities                        | 36%  |
|----|-------------------------------------------------|------|
| 2. | Project Results Assessment / Product Assessment | 24%  |
| 3. | Portfolio Assessment                            | 40%  |
|    |                                                 | 100% |

Notes

- 1. Learning Outcomes of Study Program Graduates (PLO Study Program) are the abilities possessed by each Study Program graduate which are the internalization of attitudes, mastery of knowledge and skills according to the level of their study program obtained through the learning process.
- 2. The PLO imposed on courses are several learning outcomes of study program graduates (CPL-Study Program) which are used for the formation/development of a course consisting of aspects of attitude, general skills, special skills and knowledge.
- 3. Program Objectives (PO) are abilities that are specifically described from the PLO assigned to a course, and are specific to the study material or learning materials for that course.
- 4. Subject Sub-PO (Sub-PO) is a capability that is specifically described from the PO that can be measured or observed and is the final ability that is planned at each learning stage, and is specific to the learning material of the course.
- 5. Indicators for assessing ability in the process and student learning outcomes are specific and measurable statements that identify the ability or performance of student learning outcomes accompanied by evidence.
- 6. Assessment Criteria are benchmarks used as a measure or measure of learning achievement in assessments based on predetermined indicators. Assessment criteria are guidelines for assessors so that assessments are consistent and unbiased. Criteria can be quantitative or qualitative.
- Forms of assessment: test and non-test.
- 8. Forms of learning: Lecture, Response, Tutorial, Seminar or equivalent, Practicum, Studio Practice, Workshop Practice, Field Practice, Research, Community Service and/or other equivalent forms of learning.
- Learning Methods: Small Group Discussion, Role-Play & Simulation, Discovery Learning, Self-Directed Learning, Cooperative 9. Learning, Collaborative Learning, Contextual Learning, Project Based Learning, and other equivalent methods. 10. Learning materials are details or descriptions of study materials which can be presented in the form of several main points and
- sub-topics.
- 11. The assessment weight is the percentage of assessment of each sub-PO achievement whose size is proportional to the level of difficulty of achieving that sub-PO, and the total is 100%.
- 12. TM=Face to face, PT=Structured assignments, BM=Independent study.