

Universitas Negeri Surabaya Faculty of Mathematics and Natural Sciences Undergraduate Physics Study Program

Document Code

SEMESTER LEARNING PLAN

			CODE			Cou	rse F	amil	у	Cr	edit	Wei	ght	s	SEMES	TER	Compilation Date
Mathematical	I Physics II		4520104069			Con	npulso	ory S	tudy	Т=	4 F	>= 0	ECTS=6.3	36	3		July 17, 2024
AUTHORIZAT	TION		SP Developer			LProę	yram (Súbj	ects	'se Cl	lust	er Co	ordinato	r s	Study P	Program	n Coordinator
			Nugrahani P	Nugrahani Primary Putri, M.Si.			Nugrahani Primary Putri, M.Si.				i. F	Prof. Dr. Munasir, S.Si., M.Si.					
Learning model	Case Studies																
Program	PLO study p	study program which is charged to the course															
Learning Outcomes (PLO)	PLO-9	Able issue	to work as an s.	individua	al or te	eam e	effectiv	vely,	have	entre	prer	neuria	al skills, ar	nd ca	re abou	ut envir	onmental
	PLO-10	Analy	/ze physical s	ystems b	у арр	olying	mathe	emat	ics ar	nd cor	nput	ting/l	CT tools.				
	Program Obj	ectives	(PO)														
	PO - 1		ents are able relevant sym						syster	ms re	late	d to (classical p	hysio	cs into	mathe	matical models
	PO - 2		ents are able t cs and compu					ole pl	nysica	ıl syst	ems	s rela	ted to clas	sical	l physic	s usin	g mathematical
	PO - 3		ents are able computational			imple	phys	ical :	syster	n rela	ted	to cla	assical ph	ysics	using	mather	matical physics
	PLO-PO Mati	rix															
		_															
			P.0	P.O PLO-9 PL			PLO	-10									
			PO-1														
			PO-2														
			PO-3														
				rning st	ane	(Sub	-PO)										
	PO Matrix at	the end	nd of each learning stage (Sub-PO)														
	PO Matrix at	the end	d of each lea	uning 5													
	PO Matrix at	the end	P.O	annig 3							We	eek					
	PO Matrix at	the end		1 2	3	4	5	6	7	8	We 9	eek	0 11	12	13	14	15 16
	PO Matrix at				3	4	5	6	7	8			0 11	12	13	14	15 16
	PO Matrix at	PC	P.O		3	4	5	6	7	8			0 11	12	13	14	15 16
	PO Matrix at	PC	P.O D-1		3	4	5	6	7	8			0 11	12	13	14	15 16
Short Course Description	This course e	P(P(P(P(P.O D-1 D-2 D-3 s: Complex r	1 2	Four	rier so	eries,	spe	cial fi	unctic	9 ons,	solu	tions to c	liffere	ential e	quation	15 16 15 16 15 16 16 15 16 17 15 16 16 16 16 16 16 16 16 16 16
Course	This course e	P(P(P(P(P.O D-1 D-2 D-3 s: Complex r	1 2	Four	rier so	eries,	spe	cial fi	unctic	9 ons,	solu	tions to c	liffere	ential e	quation	ns, and partial
Course Description	This course e differential equ assignments. Main : 1. Boas, 2. Arfken 3. Trigs, 4. Riley, Univ. F	M.L., , 2 , G., 199 G.L., 200 K.F., Ho Press.	P.O D-1 D-2 D-3 S: Complex n hrough active 006, Mathemat 006, Mathemat 00, Mathemat	1 2 umbers, learning atical Me cal Meth ical tools 3ence, S	Four with thods for P J. 20	ier so a corr	eries, nbinat e Phy: vsicist ist, W	spe tion of s, Ao iley-1	cial fi of disc Scien cadem Velt V cal Me	unctico cussion nice, e erlag. ethod	9 ons, on m disi ess. s for	solur solur 3, Jo	tions to c ds, questi hn Wiley &	iiffere ons a 2 Sor	ential e and ans	rquation swers a / York.	ns, and partial and IT-assisted 3, Cambridge

	1. software	e phyton					
Support lecturer	Nugrahani Prima						
Week-	Final abilities of each learning stage	Eval	uation	Help Learning, Learning methods, Student Assignments, [Estimated time]		Learning materials [References	Assessment Weight (%)
	(Sub-PO)	Indicator	Criteria & Form	Offline (offline)	Online (<i>online</i>)	1	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
1	Students are able to formulate, able to solve problems, and able to analyze problems of simple physical systems related to classical physics into mathematical models, using complex numbers and computational tools.	 Students are able to perform complex algebraic operations Students are able to solve problems related to complex series, exponential functions, logarithms, trigonometry, and hyperbolic complexes. Students are able to apply complex numbers to solve physics problems 	Criteria: Students will get full marks if they meet the assessment indicators Form of Assessment : Participatory Activities, Portfolio Assessment	Lectures, discussions and assignments on the topic of complex numbers 4 X 50	Lectures, discussions and assignments on the topic of complex numbers 4 x 50	Material: Ch 2 References: Boas, ML, , 2006, Mathematical Methods in the Physical Science, 3rd edition, John Wiley & Sons, New York.	2%
2	Students are able to formulate, able to solve problems, and able to analyze problems of simple physical systems related to classical physics into mathematical models, using complex numbers and computational tools.	 Students are able to perform complex algebraic operations Students are able to solve problems related to complex series, exponential functions, logarithms, trigonometry, and hyperbolic complexes. Students are able to apply complex numbers to solve physics problems 	Criteria: Students get full marks if they can solve all complex number problems Form of Assessment : Participatory Activities, Portfolio Assessment	Lectures, discussions and assignments on the topic of complex numbers 4 X 50	Lectures, discussions and assignments on the topic of complex numbers 4 x 50	Material: Ch 3 References: Trigs, GL, 2000, Mathematical tools for Physicists, Wiley-Velt Verlag.	3%

3	Students are able to formulate, able to solve problems, and able to analyze problems of simple physical systems related to classical physics into mathematical models, using complex numbers and computational tools.	 Students are able to perform complex algebraic operations Students are able to solve problems related to complex series, exponential functions, logarithms, trigonometry, and hyperbolic complexes. Students are able to apply complex numbers to solve physics problems 	Form of Assessment : Portfolio Assessment	Lectures, discussions and assignments on the topic of complex numbers 4 X 50	Lectures, discussions and assignments on the topic of complex numbers 4 x 50	Material: Ch. 20 References: Riley, KF, Hobson, MP, Bence, SJ 2006. Mathematical Methods for Physics and Engineering, 3rd edition, Cambridge Univ. Press.	4%
4	Students are able to formulate, able to solve problems, and able to analyze problems of simple physical system problems related to classical physics into mathematical models using Fourier series and computational tools	 Students are able to determine the average value of a function Students are able to identify the periodic function and the periodicity of a function Students are able to determine the value of the coefficient of the Fourier. series Students are able to determine the value of the fourier. series Students are able to functions Students are able to functions Students are able to determine the value of the coefficient of the Fourier. series Students are able to functions Students are able to functions Students are able to functions Students can change the form of Fourier series to complex form Students can solve Fourier series with different intervals 	Criteria: Students get full marks if they can solve all Fourier series problems Form of Assessment : Portfolio Assessment	Lectures, discussions and assignments 4 X 50	Lectures, discussions and assignments 4 X 50	Material: Ch. 7 References: Boas, ML, , 2006, Mathematical Methods in the Physical Science, 3rd edition, John Wiley & Sons, New York. Material: Ch 3 References: Arfken, G., 1995, Mathematical Methods for Physicists, Academic Press. Material: Ch 12 References: Trigs, GL, 2000, Mathematical tools for Physicists, Wiley-Velt Verlag.	4%

5	Students are able to formulate, able to solve problems, and able to analyze problems of simple physical system problems related to classical physics into mathematical models using Fourier series and computational tools	 Students are able to determine the average value of a function Students are able to identify the periodic function and the periodicity of a function Students are able to determine the value of the Fourier. series Students are able to identify odd and even functions Students are able to identify odd and even functions Students are able to identify odd and even functions Students can change the form of Fourier series to complex form Students can solve Fourier series with different intervals 	Criteria: Students get full marks if they can solve all Fourier series problems Form of Assessment : Participatory Activities, Portfolio Assessment	Lectures, discussions and assignments 4 X 50	Lectures, discussions and assignments 4 X 50	Material: Ch. 7 References: Boas, ML, , 2006, Mathematical Methods in the Physical Science, 3rd edition, John Wiley & Sons, New York. Material: Ch 3 References: Arfken, G., 1995, Mathematical Methods for Physicists, Academic Press. Material: Ch 12 References: Trigs, GL, 2000, Mathematical tools for Physicists, Wiley-Velt Verlag.	3%
6	Students are able to formulate, able to solve problems, and able to analyze problems of simple physical system problems related to classical physics into mathematical models using Fourier series and computational tools	 Students are able to determine the average value of a function Students are able to identify the periodic function and the periodicity of a function Students are able to determine the value of the coefficient of the Fourier. series Students are able to determine the value of the sourier. series Students are able to function s Students are able to determine the value of the coefficient of the Fourier. series Students are able to determine the value of the series to complex form of Fourier series to complex form Students can solve Fourier series with different intervals 	Criteria: Students get full marks if they can solve all Fourier series problems Form of Assessment : Portfolio Assessment	Lectures, discussions and assignments 4 X 50	Lectures, discussions and assignments 4 X 50	Material: Ch. 7 References: Boas, ML, , 2006, Mathematical Methods in the Physical Science, 3rd edition, John Wiley & Sons, New York. Material: Ch 3 References: Arfken, G., 1995, Mathematical Methods for Physicists, Academic Press. Material: Ch 12 References: Trigs, GL, 2000, Mathematical tools for Physicists, Wiley-Velt Verlag.	3%

7	Students are able to formulate, able to solve problems, and able to analyze problems of simple physical systems related to classical physics into mathematical models using special functions and computational tools.	Students are able to perform integral solutions using the gamma and beta functions	Criteria: Students get full marks if they can solve Gamma and Beta functions problems Form of Assessment : Participatory Activities, Portfolio Assessment	Lectures, discussions and assignments on the topic Special Functions 4 x 50	Lectures, discussions and assignments on the topic Special Functions 4 x 50	Material: Ch 11 References: Boas, ML, , 2006, Mathematical Methods in the Physical Science, 3rd edition, John Wiley & Sons, New York.	4%
8	Students can understand complex numbers and Fourier series material, and can apply it when solving physics problems	Students can solve physics problems related to complex numbers and Fourier series	Criteria: Students will get full marks if they meet the assessment indicators Form of Assessment : Test	UTS 2 x 50	UTS 2 x 50	Material: Ch 2 &7 References: Boas, ML, , 2006, Mathematical Methods in the Physical Science, 3rd edition, John Wiley & Sons, New York.	20%
9	Students are able to formulate, able to solve problems, and able to analyze problems of simple physical systems related to classical physics into mathematical models using special functions and computational tools.	 Students are able to perform integral solutions using elliptic functions Students are able to apply the concepts of gamma, beta, error functions and elliptic functions to solve physics problems 	Criteria: Students will get full marks if they meet the assessment indicators Form of Assessment : Participatory Activities, Portfolio Assessment	Discussion and assignment 4 x 50	Discussion and assignment 4 x 50	Material: Ch 11 References: Boas, ML, , 2006, Mathematical Methods in the Physical Science, 3rd edition, John Wiley & Sons, New York. Material: Ch 18 Bibliography: Trigs, GL, 2000, Mathematical tools for Physicists, Wiley-Velt Verlag.	3%
10	Students are able to formulate, able to solve problems, and able to analyze problems of simple physical systems related to classical physics into mathematical models using partial differential equations and computational tools.	 Students are able to solve differential equations related to physics concepts using Legendre polynomials Students are able to solve differential equations related to physics concepts using Bessel polynomials Students are able to solve differential equations related to physics concepts using Bessel polynomials Students are able to solve differential equations related to physics concepts using the Hermite and Laguerre functions 	Criteria: Students will get full marks if they meet the assessment indicators Form of Assessment : Participatory Activities, Portfolio Assessment	Discussion and assignment 4 x 50	Discussion and assignment 4 x 50	Material: Ch 12 References: Boas, ML, , 2006, Mathematical Methods in the Physical Science, 3rd edition, John Wiley & Sons, New York.	3%

	Students are able to formulate, able to solve problems, and able to analyze problems of simple physical systems related to classical physics into mathematical models using partial differential equations and computational tools.	 Students are able to solve differential equations related to physics concepts using Legendre polynomials Students are able to solve differential equations related to physics concepts using Bessel polynomials Students are able to solve differential equations related to physics concepts using the Hermite and Laguerre functions 	Criteria: Students will get full marks if they meet the assessment indicators Form of Assessment : Participatory Activities, Portfolio Assessment	Discussion and assignment 4 x 50	Discussion and assignment 4 x 50	Material: Ch 12 References: Boas, ML, , 2006, Mathematical Methods in the Physical Science, 3rd edition, John Wiley & Sons, New York.	4%
12	Students are able to formulate, able to solve problems, and able to analyze problems of simple physical systems related to classical physics into mathematical models using partial differential equations and computational tools.	 Students are able to solve differential equations related to physics concepts using Legendre polynomials Students are able to solve differential equations related to physics concepts using Bessel polynomials Students are able to solve differential equations related to physics concepts using Bessel polynomials Students are able to solve differential equations related to physics concepts using the Hermite and Laguerre functions 	Criteria: Students will get full marks if they meet the assessment indicators Form of Assessment : Participatory Activities, Portfolio Assessment	Discussion and assignment 4 x 50	Discussion and assignment 4 x 50	Material: Ch 12 References: Boas, ML, , 2006, Mathematical Methods in the Physical Science, 3rd edition, John Wiley & Sons, New York.	5%

13	Students are able to formulate, able to solve problems, and able to analyze problems of simple physical systems related to classical physics into mathematical models using partial differential equations and computational tools.	 1.1. Students are able to explain the types of partial differential equations 2.2. Students are able to solve 2- dimensional (2D) Laplace equations 3.3. Students are able to solve 1- dimensional (1D) wave equations 4.4. Students are able to solve steady- state temperature distribution in cylindrical rods 	Criteria: Students will get full marks if they meet the assessment indicators Form of Assessment : Participatory Activities, Portfolio Assessment	Discussion and assignment 4 x 50	Discussion and assignment 4 x 50	Material: Ch 13 References: Boas, ML, , 2006, Mathematical Methods in the Physical Science, 3rd edition, John Wiley & Sons, New York.	5%
14	Students are able to formulate, able to solve problems, and able to analyze problems of simple physical systems related to classical physics into mathematical models using partial differential equations and computational tools.	 1.1. Students are able to explain the types of partial differential equations 2.2. Students are able to solve 2- dimensional (2D) Laplace equations 3.3. Students are able to solve 1- dimensional (1D) wave equations 4.4. Students are able to solve steady- state temperature distribution in cylindrical rods 	Criteria: Students will get full marks if they meet the assessment indicators Form of Assessment : Participatory Activities, Portfolio Assessment	Discussion and assignment 4 x 50	Discussion and assignment 4 x 50	Material: Ch 13 References: Boas, ML, , 2006, Mathematical Methods in the Physical Science, 3rd edition, John Wiley & Sons, New York.	3%
15	Students are able to formulate, able to solve problems, and able to analyze problems of simple physical systems related to classical physics into mathematical models using partial differential equations and computational tools.	 1.1. Students are able to explain the types of partial differential equations 2.2. Students are able to solve 2- dimensional (2D) Laplace equations 3.3. Students are able to solve 1- dimensional (1D) wave equations 4.4. Students are able to solve steady- state temperature distribution in cylindrical rods 	Criteria: Students will get full marks if they meet the assessment indicators Form of Assessment : Participatory Activities, Portfolio Assessment	Discussion and assignment 4 x 50	Discussion and assignment 4 x 50	Material: Ch 13 References: Boas, ML, , 2006, Mathematical Methods in the Physical Science, 3rd edition, John Wiley & Sons, New York.	4%

16		Students can solve physics problems related to special functions, solutions to differential equations and partial differential equations	Criteria: Students will get full marks if they meet the assessment indicators Form of Assessment : Test	UAS 2 x 50	UAS 2 x 50	Material: Ch 11, 12, 13 References: Boas, ML, , 2006, Mathematical Methods in the Physical Science, 3rd edition, John Wiley & Sons, New York.	30%
----	--	--	---	---------------	---------------	--	-----

Evaluation Percentage Recap: Case Study

No	Evaluation	Percentage
1.	Participatory Activities	19.5%
2.	Portfolio Assessment	30.5%
3.	Test	50%
		100%

Notes

- 1. Learning Outcomes of Study Program Graduates (PLO Study Program) are the abilities possessed by each Study Program graduate which are the internalization of attitudes, mastery of knowledge and skills according to the level of their study program obtained through the learning process.
- The PLO imposed on courses are several learning outcomes of study program graduates (CPL-Study Program) which are used for the formation/development of a course consisting of aspects of attitude, general skills, special skills and knowledge.
- 3. Program Objectives (PO) are abilities that are specifically described from the PLO assigned to a course, and are specific to the study material or learning materials for that course.
- 4. **Subject Sub-PO (Sub-PO)** is a capability that is specifically described from the PO that can be measured or observed and is the final ability that is planned at each learning stage, and is specific to the learning material of the course.
- 5. **Indicators for assessing** ability in the process and student learning outcomes are specific and measurable statements that identify the ability or performance of student learning outcomes accompanied by evidence.
- 6. Assessment Criteria are benchmarks used as a measure or measure of learning achievement in assessments based on predetermined indicators. Assessment criteria are guidelines for assessors so that assessments are consistent and unbiased. Criteria can be quantitative or qualitative.
- 7. Forms of assessment: test and non-test.
- 8. Forms of learning: Lecture, Response, Tutorial, Seminar or equivalent, Practicum, Studio Practice, Workshop Practice, Field Practice, Research, Community Service and/or other equivalent forms of learning.
- Learning Methods: Small Group Discussion, Role-Play & Simulation, Discovery Learning, Self-Directed Learning, Cooperative Learning, Collaborative Learning, Contextual Learning, Project Based Learning, and other equivalent methods.
- **10. Learning materials** are details or descriptions of study materials which can be presented in the form of several main points and sub-topics.
- 11. The assessment weight is the percentage of assessment of each sub-PO achievement whose size is proportional to the level of difficulty of achieving that sub-PO, and the total is 100%.
- 12. TM=Face to face, PT=Structured assignments, BM=Independent study.