

Universitas Negeri Surabaya Faculty of Mathematics and Natural Sciences Undergraduate Physics Study Program

Document Code

SEMESTER LEARNING PLAN CODE Course Family **Credit Weight** SEMESTER Courses Compilation Date PHYSICS DATA INVERSION METHODS 4520102135 T=2 P=0 ECTS=3.18 6 July 17, 2024 AUTHORIZATION SP Developer **Course Cluster Coordinator** Study Program Coordinator Muhammad Nurul Fahmi, M.Si. Prof. Dr. Madlazim, M.Si. Prof. Dr. Munasir, S.Si., M.Si. Learning **Project Based Learning** model Program PLO study program that is charged to the course Learning Outcomes PLO-15 Solve problems in physical systems comprehensively using mathematics and computational tools. (PLO) **Program Objectives (PO)** PO - 1 Able to explain modeling theories and concepts in geophysics, especially inversion modeling PO - 2 Able to convert linear equations into matrix form PO - 3 Able to apply linear and non-linear inversion methods as well as geophysical modeling PO - 4 Able to analyze non-linear inversion problems with a global approach and its application in the field of geophysics **PLO-PO** Matrix P.O PLO-15 PO-1 PO-2 PO-3 PO-4 PO Matrix at the end of each learning stage (Sub-PO) P.O Week 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

 PO-4
 PO-4

 Short Course Description
 This course provides geophysical modeling theories and concepts including forward modeling and inversion modifiers, as well as their application in geophysical problems. This lecture examines model parameter estimation, linear and non-linear inversion methods and their solutions, the use of a priori information, and the use of damping parameters.

 References
 Main :

 1. Menke, W., Geophysical Data Analysis: Discrete Inverse Theory, Academic Press, 1989.

 2. Tarantola, A., Inverse Problem Theory: Methods for Data Fitting and Model Parameter Estimation, Elsevier, 1987.

 3. Grandis, H., Introduction to Geophysical Inversion, HAGI, 2009.

Supporters:

PO-1 PO-2 PO-3

	1. Sen, MK, Stoffa, PL, Global Optimization Methods in Geophysical Inversion, Elsevier, 1995							
Support lecturer	ing	Arie Realita, M.S Muhammad Nurt	i. ıl Fahmi, S.Si.,	M.Si.				
Week-	Week- Final abilities of each learning stage (Sub-PO)		Evaluation		Help Learning, Learning methods, Student Assignments, [Estimated time]		Learning materials	Assessment
			Indicator	Criteria & Form	Offline (offline)	Online (<i>online</i>)	[References]	itoigin (70)
(1)		(2)	(3)	(4)	(5)	(6)	(7)	(8)
1	Students are able to explain the concepts of geophysical modeling, forward modeling and inversion modeling		Perceptual Similarity	Criteria: Test and non-test Form of Assessment : Participatory Activities	Blended learning method (combination of face to face and e- learning 2 x 50 minutes		Material: Concepts of geophysical modeling, forward modeling and inversion modeling References: <i>Menke, W.,</i> <i>Geophysical Data</i> <i>Analysis: Discrete</i> <i>Inverse Theory,</i> <i>Academic Press,</i> 1989.	3%
2	St to inv an ge ma	udents are able formulate linear <i>v</i> ersion problems Id solve them in neral using atrix equations	Accuracy of analysis and reasoning	Criteria: Test and non-test Form of Assessment : Project Results Assessment / Product Assessment	Blended learning method (combination of face to face and e- learning 2 x 50 minutes		Material: Least square method (LS): a. Straight line regression linear inversion problem formulation References: <i>Grandis, H.,</i> <i>Introduction to</i> <i>Geophysical</i> <i>Inversion, HAGI,</i> 2009.	3%
3	St to inv an ge ma	udents are able formulate linear version problems di solve them in eneral using atrix equations	Accuracy of analysis and reasoning	Criteria: 1.Test and non- test 2.Task Form of Assessment : Project Results Assessment / Product Assessment	Blended learning method (combination of face to face and e- learning 2 x 50 minutes		Material: Examples of linear inversion problems in geophysics and linear inversion in simple geophysical data problems/modeling References: <i>Grandis, H.,</i> <i>Introduction to</i> <i>Geophysical</i> <i>Inversion, HAGI,</i> 2009.	3%
4	St to eff lin so so un foi co	udents are able demonstrate the fect of data icertainty on ear inversion lutions and lution icertainty in the m of a model -variance matrix	Accuracy of analysis and reasoning	Criteria: 1.Test and non- test 2.Task Form of Assessment : Project Results Assessment / Product Assessment	Blended learning method (combination of face to face and e- learning 2 x 50 minutes		Material: Data uncertainty, standard deviation, data co-variance matrix, model co- variance matrix, Weighted linear inversion problem formulation and solution References: Grandis, H., Introduction to Geophysical Inversion, HAGI, 2009.	3%
5	St to efi un lin so so un fo co	udents are able demonstrate the fect of data ccertainty on ear inversion lutions and lution ccertainty in the rm of a model -variance matrix	Accuracy of analysis and reasoning	Criteria: 1.Test and non- test 2.Task Form of Assessment : Project Results Assessment / Product Assessment	Blended learning method (combination of face to face and e- learning 2 x 50 minutes		Material: The concept of "a priori" information and model complexity (norm model, reference model, variation of model parameters) and damped linear inversion problem formulation and solution. References: <i>Grandis, H.,</i> <i>Introduction to</i> <i>Geophysical</i> <i>Inversion, HAGI,</i> 2009.	3%

6	Students are able to demonstrate the effect of data uncertainty on linear inversion solutions and solution uncertainty in the form of a model co-variance matrix	Accuracy of analysis and reasoning	Criteria: 1.Test and non- test 2.Task Form of Assessment : Project Results Assessment / Product Assessment	Blended learning method (combination of face to face and e- learning 2 x 50 minutes	Material: Damped least squares method (damped LS) (2): a. Application of damped linear inversion in modeling geophysical data (norm model, reference model) References: <i>Grandis, H.,</i> <i>Introduction to</i> <i>Geophysical</i> <i>Inversion, HAGI,</i> 2009.	3%
7	Students are able to demonstrate the effect of data uncertainty on linear inversion solutions and solution uncertainty in the form of a model co-variance matrix	Accuracy of analysis and reasoning	Criteria: 1.Test and non- test 2.Task Form of Assessment : Project Results Assessment / Product Assessment	Blended learning method (combination of face to face and e- learning 2 x 50 minutes	Material: Damped least squares method (damped LS) (2): a. Application of damped linear inversion in modeling geophysical data (norm model, reference model) References: <i>Grandis, H.,</i> <i>Introduction to</i> <i>Geophysical</i> <i>Inversion, HAGI,</i> 2009.	4%
8	Students are able to solve UTS questions well	Students are able to solve UTS questions well	Criteria: Full marks if the project meets the assessment rubric Form of Assessment : Project Results Assessment / Product Assessment	Midterm 100 minutes	Material: Midterm Exam References: Grandis, H., Introduction to Geophysical Inversion, HAGI, 2009.	20%
9	Students are able to formulate non- linear inversion problems using a linear approach	Accuracy of analysis and reasoning	Criteria: Task	Blended learning method (combination of face to face and e- learning) 2 x 50 minutes	Material: Linearization of non-linear functions and iterative formulation of non- linear inversion solutions (Gauss Newton, gradient) References: <i>Grandis, H.,</i> <i>Introduction to</i> <i>Geophysical</i> <i>Inversion, HAGI,</i> 2009.	4%
10	Students are able to apply non-linear inversion with a linear approach to geophysical data	Accuracy of analysis and reasoning	Criteria: Task	Blended learning method (combination of face to face and e- learning) 2 x 50 minutes	Material: Non- linear inversion with linear / local approximation (2): a. Application of non-linear inversion in geophysical data modeling References: <i>Grandis, H.,</i> <i>Introduction to</i> <i>Geophysical</i> <i>Inversion, HAGI,</i> 2009.	4%

11	Students are able to explain the characteristics of linear approaches to non-linear problems and formulate grid search and random search techniques	Accuracy of analysis and reasoning	Criteria: Task	Blended learning method (combination of face to face and e- learning) 2 x 50 minutes	Material: Concept of local minimum and global minimum and grid search and random search techniques. Reference: <i>Grandis, H.,</i> <i>Introduction to</i> <i>Geophysical</i> <i>Inversion, HAGI,</i> 2009.	4%
12	Students are able to explain the concept of guided random search and the simulated annealing method	Accuracy of analysis and reasoning	Criteria: Task	Blended learning method (combination of face to face and e- learning) 2 x 50 minutes	Material: Guided random concept and Simmullated Annealing Method References: <i>Grandis, H.,</i> <i>Introduction to</i> <i>Geophysical</i> <i>Inversion, HAGI,</i> 2009.	4%
13	Students are able to explain the concept of genetic algorithms	Accuracy of analysis and reasoning	Criteria: Task	Blended learning method (combination of face to face and e- learning) 2 x 50 minutes	Material: Genetic Algorithms Literature: Grandis, H., Introduction to Geophysical Inversion, HAGI, 2009.	4%
14	Students are able to explain the concept of genetic algorithms	Accuracy of analysis and reasoning	Criteria: Task	Blended learning method (combination of face to face and e- learning) 2 x 50 minutes	Material: Discussion of examples of non- linear inversion applications on geophysical data. Reference: Grandis, H., Introduction to Geophysical Inversion, HAGI, 2009.	4%
15	Students are able to explain the concept of genetic algorithms	Accuracy of analysis and reasoning	Criteria: Task	Blended learning method (combination of face to face and e- learning) 2 x 50 minutes	Material: Discussion of examples of non- linear inversion applications on geophysical data. Reference: Grandis, H., Introduction to Geophysical Inversion, HAGI, 2009.	4%
16	Able to understand UAS projects well	Understand UAS projects well	Criteria: Full marks if the project meets the assessment rubric Form of Assessment : Project Results Assessment / Product Assessment	UAS 100 minutes	Material: Final Semester Exam References: Menke, W., Geophysical Data Analysis: Discrete Inverse Theory, Academic Press, 1989.	30%

Evaluation Percentage Recap: Project Based Learning

No	Evaluation	Percentage
1.	Participatory Activities	3%
2.	Project Results Assessment / Product Assessment	69%
		72%

Learning Outcomes of Study Program Graduates (PLO - Study Program) are the abilities possessed by each Study Program graduate which are the internalization of attitudes, mastery of knowledge and skills according to the level of their study program obtained through the learning process.

- 2. The PLO imposed on courses are several learning outcomes of study program graduates (CPL-Study Program) which are used for the formation/development of a course consisting of aspects of attitude, general skills, special skills and knowledge.
- 3. **Program Objectives (PO)** are abilities that are specifically described from the PLO assigned to a course, and are specific to the study material or learning materials for that course.
- 4. **Subject Sub-PO (Sub-PO)** is a capability that is specifically described from the PO that can be measured or observed and is the final ability that is planned at each learning stage, and is specific to the learning material of the course.
- 5. Indicators for assessing ability in the process and student learning outcomes are specific and measurable statements that identify the ability or performance of student learning outcomes accompanied by evidence.
- 6. Assessment Criteria are benchmarks used as a measure or measure of learning achievement in assessments based on predetermined indicators. Assessment criteria are guidelines for assessors so that assessments are consistent and unbiased. Criteria can be quantitative or qualitative.
- 7. Forms of assessment: test and non-test.
- 8. Forms of learning: Lecture, Response, Tutorial, Seminar or equivalent, Practicum, Studio Practice, Workshop Practice, Field Practice, Research, Community Service and/or other equivalent forms of learning.
- Learning Methods: Small Group Discussion, Role-Play & Simulation, Discovery Learning, Self-Directed Learning, Cooperative Learning, Collaborative Learning, Contextual Learning, Project Based Learning, and other equivalent methods.
- 10. Learning materials are details or descriptions of study materials which can be presented in the form of several main points and sub-topics.
- 11. The assessment weight is the percentage of assessment of each sub-PO achievement whose size is proportional to the level of difficulty of achieving that sub-PO, and the total is 100%.
- 12. TM=Face to face, PT=Structured assignments, BM=Independent study.