

Universitas Negeri Surabaya Faculty of Mathematics and Natural Sciences Undergraduate Physics Study Program

Document Code

SEMESTER LEARNING PLAN

Courses			CODE				Соц	urse F	amil	У	Cr	Credit Weight			S	EMEST	FER	Co Dat	mpilat te	
Computation		452010306	1			Cor Pro	npuls gram	ory S Subje	tudy ects	T=	3 P	P=0	ECTS=4.7	7	2		Au 202	gust 1! 23		
AUTHORIZAT	ΓΙΟΝ	:	SP Developer					Cou	rse C	uste	er Co	ordinator	S	tudy P	rogran	1 Cool	dinat			
		Muhammad	d Nurul Fahmi, M.Si. Muhammad Nurul Fahmi, M.Si.					F	Prof. Dr. Munasir, S.Si., M.Si.											
Learning model	Project Based Learning																			
Program	Program PLO study program which is charged to the course																			
Learning Outcomes	PLO-9 Able to work as an individual or team effectively, have entrepreneurial skills, and care about environmental issues.																			
(PLO)	Program Objectives (PO)																			
	PO-1 Students are able to understand the relationship between theoretical physics, computational physics and experimental physics																			
	PO - 2	Student	ts are able	to mo	del phy	ysica	l phe	nome	na ba	ased o	on cor	nputa	ationa	al and ma	hema	atical m	nethods	hods		
PO - 3 Students are able to understand computational-based numerical approach methods an							ds an	d solut	ions											
	PO - 4	Student	ts are able	to sim	nulate,	mod	el ano	d visu	alize	comp	utatio	nally	/ base	ed physics	data	L				
	PO - 5 Able to work effectively independently or in groups to solve physical phenomena problems using computational mathematical approaches								ational											
	PLO-PO Matrix	[
			P.0		PLC	0-9														
			PO-1																	
			PO-2																	
			PO-3																	
			PO-4																	
			PO-5																	
	PO Matrix at th	e end o	f each lea	rning	g stag	e (Si	ub-P	0)												
			P.O									We	ek					1		
				1	2	3	4	5	6	7	8	9	10	0 11	12	13	14	15	16	
		PO-	1																	
		PO-	2																	
		PO-	3																	
		PO-	4																	
		PO-	5																	
Short Course Description	This course examplify finding the roots extrapolation, for differentiation, nu	nines tec of non- orming e umerical	chniques for linear and equations f integration	r solvi polyn rom , and	ing pro nomial the re solving	blem equa esulti g orc	ns nui ations ng d dinary	merica s, sol ¹ lata 1 / diffe	ally, e ving neas rentia	error a matric ureme	nalys æs, s ent, i ations	is, si olvin nvers s nur	imple Ig sys sion meric	data ana stems of method, ally and s	ysis linea least colvin	numeri r equa t-squar g parti	cally, e tions, i es me al diffe	valuati nterpo thod, rential	ing ser lation nume equat	
	numerically.																			
References	Main :				-									-		_	-			

	 Ayars, E Landau, Chapra, Sholihun 	2013. Computational R. H., Páez, M. J., and S. and Clough, D. 202 , Fatomi, Z. Y. 2021. F	Physics With Python. I Bordeianu, C. C. 201 1. Applied Numerical I Pemrograman dan Kor	California State 5. Computation Methods with P nputasi Numeril	e University. nal Physics 3rd ed. Wiley ython for Engineers and k Menggunakan Python.	-VCH. Scientists. London: Yogyakarta: UGM F	McGraw Hill. Press.
	Supporters:						
	1. Conte, S 2. Gerald, C Print.	. D. and Boor, C. D. 19 C. F. and Wheatley, P.	982, Elementary Nume O. 2004, Applied Num	erical Analysis a Ierical Analysis.	an Algorithmic Approach, 7th ed., International ed.	London: McGraw-F Boston, Mass.;: Pe	lill earson, 2004.
Support lecturer	ing Prof. Dr. Madlazi Dzulkiflih, S.Si., M Dr. Eng. Evi Suaa Arie Realita, M.S Dr. Muhimmatul H Muhammad Nuru	m, M.Si. A.T. sbah, M.Si., M.Sc. i. Khoiro, S. Si. I Fahmi, S.Si., M.Si.					
Week-	Final abilities of each learning stage	Evalu	lation	He Lear Stude [Es	elp Learning, ning methods, nt Assignments, stimated time]	Learning materials [References]	Assessment Weight (%)
	(Sub-PO)	Indicator	Criteria & Form	Offline(offline)	Online (<i>online</i>)		
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
1	Able to understand the concepts of variables, repetition, and branching in computational programming	Students understand the concepts of variables, repetition, and branching in computational programming	Criteria: Quantitative Form of Assessment : Participatory Activities	Model: PjBL Method: Discussion, question and answer, virtual simulation 3 x 50 minutes		Material: Basics of Python programming Reference: Ayars, E. 2013. Computational Physics With Python. California State University.	3%
2	Able to understand the concept of relative error from measuring quantities and calculating physical functions	Students are able to explain the concept of relative error from measuring quantities and calculating physical functions	Criteria: Quantitative Form of Assessment : Participatory Activities, Tests	Model: PjBL Method: Discussion, question and answer, virtual simulation 3 x 50 minutes		Material: The concept of error in computing References: Chapra, S. and Clough, D. 2021. Applied Numerical Methods with Python for Engineers and Scientists. London: McGraw Hill. Material: Relative accuracy of measuring quantities and calculating physical functions References: Chapra, S. and Clough, D. 2021. Applied Numerical Methods with Python for Engineers and Scientists. London: McGraw Hill.	3%
3	1.Able to understand variations in root search methods using a numerical approach, and able to analyze to determine the most optimal method 2.Able to determine the most optimal root search method	 Students are able to explain various root search methods using a numerical approach, and are able to analyze to determine the most optimal method Students are able to determine the most optimal root search method 	Criteria: Quantitative Form of Assessment : Project Results Assessment / Product Assessment	Model: PjBL Method: Discussion, question and answer, virtual simulation 3 x 50 minutes		Material: Bisection Method, Newton- Raphson, Secant References: Chapra, S. and Clough, D. 2021. Applied Numerical Methods with Python for Engineers and Scientists. London: McGraw Hill.	3%

4	 Able to understand the concept of interpolation Able to understand the types of interpolation and their implementation on physics data 	 Students are able to describe the concept of interpolation Students are able to use types of interpolation and their implementation on physics data 	Criteria: Quantitative Form of Assessment : Participatory Activities, Portfolio Assessment	Model: PjBL Method: Discussion, question and answer, virtual simulation Assignments 3 x 50 minutes	Material: linear interpolation, Lagrange interpolation, Newton interpolation, Splines interpolation References: Landau, RH, Páez, MJ, and Bordeianu, CC 2015. Computational Physics 3rd ed. Wiley-VCH.	3%
5	 Able to understand the concept of interpolation Able to understand the types of interpolation and their implementation on physics data 	 Students are able to describe the concept of interpolation Students are able to use types of interpolation and their implementation on physics data 	Criteria: Quantitative Form of Assessment : Project Results Assessment / Product Assessment	Model: PjBL Method: Discussion, question and answer, virtual simulation Assignments 3 x 50 minutes	Material: linear interpolation, Lagrange interpolation, Newton interpolation, Splines interpolation References: Landau, RH, Páez, MJ, and Bordeianu, CC 2015. Computational Physics 3rd ed. Wiley-VCH.	3%
6	Able to understand the concept of solving linear equations in computing	Students are able to explain the concept of solutions to linear equations in computing	Criteria: Quantitative Form of Assessment : Participatory Activities	Model: PjBL Method: Discussion, question and answer, virtual simulation 3 x 50 minutes	Material: Gauss Elimination method, Gauss- Jordan, Cholesky, LU Factorization, Gauss Seidel method References: Landau, RH, Páez, MJ, and Bordeianu, CC 2015. Computational Physics 3rd ed. Wiley-VCH.	3%
7	Able to understand the method and operating system of matrix eigenvalues	Students understand the method and operating system for matrix eigenvalues	Criteria: Quantitative Form of Assessment : Participatory Activities	Model: PjBL Method: Discussion, question and answer, virtual simulation 3 x 50 minutes	Material: Householder tridiagonalization method, QR factorization method References: Landau, RH, Páez, MJ, and Bordeianu, CC 2015. Computational Physics 3rd ed. Wiley-VCH.	4%
8	 Able to complete UTS properly and correctly Able to solve physics problems using computational and mathematical approaches 	1.Students complete UTS well and correctly 2.Students solve physics problems using computational and mathematical approaches	Criteria: Quantitative Form of Assessment : Project Results Assessment / Product Assessment, Portfolio Assessment	Instructions for completing the 100 minute UTS	Material: Midterm Exam Literature:	20%

9	 Able to master the curve optimization method through the application of the Curve Fitting method with the least squares approach Able to apply the least squares approach method to physics data 	 Students master curve optimization techniques through the application of the Curve Fitting method with a least squares approach Students apply the least squares approach method to physics data 	Criteria: Quantitative Form of Assessment : Participatory Activities	Model: PjBL Method: Discussion, question and answer, 100 minute virtual simulation	Material: straight line models, nonlinear curve models (power functions, exponential functions, high degree polynomial functions) References: <i>Landau, RH,</i> <i>Páez, MJ, and</i> <i>Bordeianu, CC</i> 2015. <i>Computational</i> <i>Physics 3rd ed.</i> <i>Wiley-VCH.</i>	4%
10	 Able to master the curve optimization method through the application of the Curve Fitting method with the least squares approach Able to apply the least squares approach method to physics data 	 Students master curve optimization techniques through the application of the Curve Fitting method with a least squares approach Students apply the least squares approach method to physics data 	Criteria: Quantitative Form of Assessment : Project Results Assessment / Product Assessment	Model: PjBL Method: Discussion, question and answer, virtual simulation Assignment 100 minutes	Material: straight line models, nonlinear curve models (power functions, exponential functions, high degree polynomial functions) References: Landau, RH, Páez, MJ, and Bordeianu, CC 2015. Computational Physics 3rd ed. Wiley-VCH.	4%
11	 Able to understand numerical differentiation methods in computing Able to apply numerical differentiation methods to simulate physical phenomena 	 Students understand numerical differentiation methods in computing Students apply numerical differentiation methods to simulate physical phenomena 	Criteria: Quantitative Form of Assessment : Participatory Activities	Model: PjBL Method: Discussion, question and answer, virtual simulation 3 x 50 minutes	Material: Numerical Differentiation, Differential schemes with a combination of Taylor series, development of Lagrange interpolation References: Landau, RH, Páez, MJ, and Bordeianu, CC 2015. Computational Physics 3rd ed. Wiley-VCH.	4%
12	 Able to understand and master numerical differentiation methods in computing Able to apply numerical differentiation methods to simulate physical phenomena 	 Students understand and master numerical differentiation methods in computing Students apply numerical differentiation methods to simulate physical phenomena 	Criteria: Quantitative Form of Assessment : Project Results Assessment / Product Assessment	Model: PjBL Method: Discussion, question and answer, virtual simulation Assignments 3 x 50 minutes	Material: Numerical Differential schemes with a combination of Taylor series, development of Lagrange interpolation References: Landau, RH, Páez, MJ, and Bordeianu, CC 2015. Computational Physics 3rd ed. Wiley-VCH.	4%

13	 Able to understand and master numerical integration methods in computing Able to apply numerical integration methods to simulate physical phenomena 	 Students understand and master numerical integration methods in computing Students apply numerical integration methods to simulate physical phenomena 	Criteria: Quantitative Form of Assessment : Participatory Activities	Model: PjBL Method: Discussion, question and answer, virtual simulation 3 x 50 minutes	Material: Trapezoid rule, Simpson's rule, Newton-Cotes formula, Gauss- Legendre formula, Gauss- Hermite formula, Gauss-Laguerre formula References : Landau, RH, Páez, MJ, and Bordeianu, CC 2015. Computational Physics 3rd ed. Wiley-VCH.	4%
14	 Able to understand and master numerical integration methods in computing Able to apply numerical integration methods to simulate physical phenomena 	 Students understand and master numerical integration methods in computing Students apply numerical integration methods to simulate physical phenomena 	Criteria: Quantitative Form of Assessment : Project Results Assessment / Product Assessment	Model: PjBL Method: Discussion, question and answer, virtual simulation Assignments 3 x 50 minutes	Material: Trapezoid rule, Simpson's rule, Newton-Cotes formula, Gauss- Legendre formula, Gauss- Hermite formula, Gauss-Laguerre formula References : Landau, RH, Páez, MJ, and Bordeianu, CC 2015. Computational Physics 3rd ed. Wiley-VCH.	4%
15	Able to understand types of Ordinary Differential Equations (PDB) with initial values determined on a computational basis	Students understand the types of Ordinary Differential Equations (PDB) with initial values determined on a computational basis	Criteria: Quantitative Form of Assessment : Project Results Assessment / Product Assessment	Model: PjBL Method: Discussion, question and answer, virtual simulation 3 x 50 minutes	Material: Trapezoid rule, Simpson's rule, Newton-Cotes formula, Gauss- Legendre formula, Gauss- Hermite formula, Gauss-Laguerre formula References : Landau, RH, Páez, MJ, and Bordeianu, CC 2015. Computational Physics 3rd ed. Wiley-VCH. Material: Euler's method, Runge- Kutta method, higher order PDB and GDP systems References: Landau, RH, Páez, MJ, and Bordeianu, CC 2015. Computational Physics 3rd ed. Wiley-VCH.	4%
16	 Able to complete UAS projects well Able to solve physics problems using computational and mathematical approaches 	 Students are able to complete the UAS project well Students are able to solve physics problems using computational and mathematical approaches 	Criteria: Quantitative Forms of Assessment : Participatory Activities, Project Results Assessment / Product Assessment, Portfolio Assessment	Group Presentation 100 minutes	Material: Final Semester Exam Literature:	30%

Evaluation Percentage Recap: Project Based Learning

No	Evaluation	Percentage
1.	Participatory Activities	35%

2.	Project Results Assessment / Product Assessment	42%
3.	Portfolio Assessment	21.5%
4.	Test	1.5%
		100%

Notes

- Learning Outcomes of Study Program Graduates (PLO Study Program) are the abilities possessed by each Study
 Program graduate which are the internalization of attitudes, mastery of knowledge and skills according to the level of their
 study program obtained through the learning process.
- 2. The PLO imposed on courses are several learning outcomes of study program graduates (CPL-Study Program) which are used for the formation/development of a course consisting of aspects of attitude, general skills, special skills and knowledge.
- 3. **Program Objectives (PO)** are abilities that are specifically described from the PLO assigned to a course, and are specific to the study material or learning materials for that course.
- 4. **Subject Sub-PO (Sub-PO)** is a capability that is specifically described from the PO that can be measured or observed and is the final ability that is planned at each learning stage, and is specific to the learning material of the course.
- 5. **Indicators for assessing** ability in the process and student learning outcomes are specific and measurable statements that identify the ability or performance of student learning outcomes accompanied by evidence.
- 6. Assessment Criteria are benchmarks used as a measure or measure of learning achievement in assessments based on predetermined indicators. Assessment criteria are guidelines for assessors so that assessments are consistent and unbiased. Criteria can be quantitative or qualitative.
- 7. Forms of assessment: test and non-test.
- 8. Forms of learning: Lecture, Response, Tutorial, Seminar or equivalent, Practicum, Studio Practice, Workshop Practice, Field Practice, Research, Community Service and/or other equivalent forms of learning.
- 9. Learning Methods: Small Group Discussion, Role-Play & Simulation, Discovery Learning, Self-Directed Learning,
- Cooperative Learning, Collaborative Learning, Contextual Learning, Project Based Learning, and other equivalent methods. 10. Learning materials are details or descriptions of study materials which can be presented in the form of several main points and sub-topics.
- 11. The assessment weight is the percentage of assessment of each sub-PO achievement whose size is proportional to the level of difficulty of achieving that sub-PO, and the total is 100%.
- 12. TM=Face to face, PT=Structured assignments, BM=Independent study.