

Universitas Negeri Surabaya Faculty of Mathematics and Natural Sciences Physics Education Undergraduate Study Program

Document Code

SEMESTER LEARNING PLAN

Courses		CODE	:			Course Famil			У	Cr	edi	t Weig	ht	:	SEME	STER	Con	mpilat e
Optics		84203	02144							T=	2	P=0 E	CTS=3.	18		3	July	/ 18, 2
AUTHORIZATION		SP De	veloper			•			Cour	se Cl	ust	er Coo	rdinato	r s	Study	Progra	am Co	ordina
Learning model	Project Based	Learning													Mita	Angga P	aryani, h.D.	M.Pd.
Program	PLO study program that is charged to the course																	
Outcomes	Program Objectives (PO)																	
(PLO)	PO - 1 Students are able to apply the physical optics system to Huygens' principles and equations																	
	PO - 2	Students are able to apply basic concepts of physical optics to interference (wavefront splitting interferometers and amplitude splitting).																
	PO - 3	Students are able to apply physical optics to various diffraction systems (Fresnell, Frounthoufer, single slit and diffraction grating).																
-	PO - 4	Students are able to apply the polarization system to optical systems																
-	PO - 5	Students are able to apply geometric optics systems to Fermat's principles of reflection and refraction																
-	PO - 6	Students are	tudents are able to apply the concept of geometric optics to optical instruments															
-	PO - 7	Students are able to apply light propagation systems in media and between media																
		PO-2 PO-2 PO-4 PO-4 PO-4 PO-4	2 3 4 5 6 7															
	PO Matrix at t	the end of ea	ch learnii	ng sta	age (Sub-	PO)											
		P.O	P.O Week															
			1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
		PO-1																
		PO-2																
		PO-3																
		PO-4																
		PO-5																
				1								1						1
		PO-6																

Short Course Descript	Lecture materi measurements, superposition, principles of la discussions, lat	al includes the com concepts of geome light interference ph sers, optical wavegu poratory practice, prob	cept of light accordii atric optics, Matrix M enomena, light polar ides, and Non-Linear olem solving and assig	ng to classical ethods in optic ization, light di Optics. Learni nments.	and modern views, th is, working principles of ffraction, multi-layer film ng is carried out using i	e process of g optical instrume s, equations Fre material presenta	enerating light entation, wave esnel, working ation methods,
Reference	ces Main :						
	1. Hecht, 2. Pedroti	E., 2012. Optics. Pea ti, F.L., Pedrotti, L.M.	rson Education. India. and Pedrotti, L.S., 201	7. Introduction 1	to optics. Cambridge Univ	versity Press.	
	Supporters:						
	 Keiser, Jenkins Hill. Walker Bueche Gianco 	G., 2000. Optical fibe s, F.A., 1976. Fundan , J., Resnick, R. and I e, F.J. and Jerde, D.A li, D.C., 2005. Physic	er communications (Vc nentals of Optics: By I Halliday, D., 2014. Hal ., 1995. Principles of p s: principles with appli	ol. 2). New York: Francis A. Jenki liday and resnic ohysics (Vol. 6). cations (Vol. 1).	McGraw-Hill. ins and Harvey E. White k fundamentals of physic: New York: McGraw-Hill. Pearson Educación.	(No. 535 J45 19 s. Wiley.	50.). McGraw-
Supporti lecturer	ing Dr. Titin Sunart Dr. Dwikoranto, Setyo Admoko, Dr. Rohim Amir Mukhayyarotin Dr. Muhimmatu	i, M.Si. M.Pd. S.Pd., M.Pd. nullah Firdaus, S.Pd, I Niswati Rodliyatul Jau I Khoiro, S. Si.	M.Si Jhariyah, S.Pd., M.Pd.				
Week-	Final abilities of each learning stage	Evaluation		Help Learning, Learning methods, Student Assignments, [Estimated time]		Learning materials [References	Assessment Weight (%)
	(Sub-PO)	Indicator	Criteria & Form	Offline (offline)	Online (online)	1	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
1	Able to analyze geometric optics on the Fermat principle of reflection and refraction	 Explain Newton's corpuscular theory and Huygen's wave theory of light Explain and analyze geometric optics on the Fermat principle of reflection Explain the concept of geometric optics based on the Fermat principle of refraction 	Criteria: Quantitative Form of Assessment : Participatory Activities	Lectures, Questions and Answers, Discussions and Presentations 100 minutes	Lectures, Questions and Answers, Discussions and Presentations 100 minutes	Material: Introduction to optics, History of optics, Particle-wave dualism, Optical spectrum Bibliography: <i>Hecht, E.,</i> 2012. Optics. <i>Pearson</i> <i>Education.</i> <i>India.</i>	3%
2	Able to master the concept of light propagation in media and between media	Be able to explain reflection and refraction on a flat surface	Criteria: Quantitative Form of Assessment : Participatory Activities	Lectures, Questions and Answers, Discussions and Presentations 100 minutes	Lectures, Questions and Answers, Discussions and Presentations 100 minutes	Material: Reflection in a plane mirror, refraction in different media Reference: <i>Hecht, E.,</i> 2012. Optics. <i>Pearson</i> <i>Education.</i> <i>India.</i>	3%
3	Able to master the concept of light propagation in media and between media	Be able to explain reflection and refraction on a flat surface	Criteria: Quantitative Form of Assessment : Participatory Activities	Lectures, Questions and Answers, Discussions and Presentations 100 minutes	Lectures, Questions and Answers, Discussions and Presentations 100 minutes	Material: Light propagation in parallel plane glass and prisms Reference: Hecht, E., 2012. Optics. Pearson Education. India.	3%

4	Able to master reflection and refraction on curved surfaces	Be able to explain reflection and refraction on curved surfaces	Criteria: Quantitative Form of Assessment : Participatory Activities	Lectures, Questions and Answers, Discussions and Presentations 100 minutes	Lectures, Questions and Answers, Discussions and Presentations 100 minutes	Material: Light propagation in curved mirrors Reference: Hecht, E., 2012. Optics. Pearson Education. India.	3%
5	Able to master reflection and refraction on curved surfaces	Be able to explain reflection and refraction on curved surfaces	Criteria: Quantitative Form of Assessment : Participatory Activities	Lectures, Questions and Answers, Discussions and Presentations 100 minutes	Lectures, Questions and Answers, Discussions and Presentations 100 minutes	Material: Light propagation in thin lenses and thick lenses References: Hecht, E., 2012. Optics. Pearson Education. India.	3%
6	Able to master reflection and refraction on curved surfaces	Be able to explain reflection and refraction on curved surfaces	Criteria: Quantitative Form of Assessment : Participatory Activities, Project Results Assessment / Product Assessment	Lectures, Questions and Answers, Discussions and Presentations 100 minutes	Lectures, Questions and Answers, Discussions and Presentations 100 minutes	Material: Light propagation on spherical surfaces References: Hecht, E., 2012. Optics. Pearson Education. India.	4%
7	Able to master the concept of optical instruments	Able to explain the working principles of optical instruments	Criteria: Quantitative Form of Assessment : Participatory Activities, Project Results Assessment / Product Assessment	Lectures, Questions and Answers, Discussions and Presentations 100 minutes	Lectures, Questions and Answers, Discussions and Presentations 100 minutes	Material: Optical tools: loupe, microscope, binoculars, telescope Reference: Hecht, E., 2012. Optics. Pearson Education. India.	4%
8	Able to master and analyze the principles and concepts of geometric optics and optical instruments	Able to understand and solve USS questions that are relevant to geometric optics teaching material	Criteria: Quantitative Form of Assessment : Project Results Assessment / Product Assessment	100 minute written test	100 minute written test	Material: UTS Material Reference: Hecht, E., 2012. Optics. Pearson Education. India.	20%
9	Able to explain wave superposition	 Able to explain the concept of superposition of two wave sources Able to apply the concept of superposition to explain various related phenomena 	Criteria: Quantitative Form of Assessment : Participatory Activities, Project Results Assessment / Product Assessment	100 minutes of questions and answers, discussions and presentations	100 minutes of questions and answers, discussions and presentations	Material: Superposition of optical waves References: Hecht, E., 2012. Optics. Pearson Education. India.	4%
10	Able to explain and apply the phenomenon of light interference,	Explain the concept of physical optics in the phenomenon of light interference	Criteria: Quantitative Form of Assessment : Participatory Activities, Project Results Assessment / Product Assessment	100 minutes of questions and answers, discussions and presentations	100 minutes of questions and answers, discussions and presentations	Material: Light interference phenomena, Reference: Hecht, E., 2012. Optics. Pearson Education. India.	4%

11	Able to master the concept of physical optics in diffraction	 1.Able to explain the concept of physical optics in Fresnell diffraction 2.Able to explain the concept of physical optics in Frounthoufer diffraction 	Criteria: Quantitative Form of Assessment : Participatory Activities, Project Results Assessment / Product Assessment	100 minutes of questions and answers, discussions and presentations	100 minutes of questions and answers, discussions and presentations	Material: Fresnell and Frounthoufer Diffraction References: Hecht, E., 2012. Optics. Pearson Education. India.	3%
12	Able to master the concept of physical optics in diffraction	Able to explain the concept of physical optics in single slit diffraction and diffraction gratings	Criteria: Quantitative Form of Assessment : Participatory Activities, Project Results Assessment / Product Assessment	100 minutes of questions and answers, discussions and presentations	100 minutes of questions and answers, discussions and presentations	Material: Single slit and grating diffraction Reference : Hecht, E., 2012. Optics. Pearson Education. India.	4%
13	Able to master the concept of physical optics on polarization	Able to explain the concept of physical optics on polarization	Criteria: Quantitative Form of Assessment : Participatory Activities, Project Results Assessment / Product Assessment	100 minutes of questions and answers, discussions and presentations	100 minutes of questions and answers, discussions and presentations	Material: Light Polarization References: Hecht, E., 2012. Optics. Pearson Education. India.	4%
14	Able to understand the application of optics to lasers and fiber optics	 Be able to mention the working principle process for making a laser Able to understand the characteristics of laser light 	Criteria: Quantitative Form of Assessment : Participatory Activities, Project Results Assessment / Product Assessment	100 minutes of questions and answers, discussions and presentations	100 minutes of questions and answers, discussions and presentations	Material: Laser Library: Hecht, E., 2012. Optics. Pearson Education. India.	4%
15	Able to understand the application of optics to lasers and fiber optics	 Able to understand various optical properties of materials Able to understand various optical properties of materials for various applications 	Criteria: Quantitative Form of Assessment : Participatory Activities, Project Results Assessment / Product Assessment	100 minutes of questions and answers, discussions and presentations	100 minutes of questions and answers, discussions and presentations	Material: Optical Fiber and Other Optical Applications Reference: <i>Hecht, E.,</i> 2012. Optics. <i>Pearson</i> <i>Education.</i> <i>India.</i>	4%
16	Able to understand optical concepts in the application of optical technology	Able to understand various optical properties of materials	Criteria: Quantitative Form of Assessment : Project Results Assessment / Product Assessment	Preparation and presentation of a scientific paper 100 minutes	Preparation and presentation of a scientific paper 100 minutes	Material: Modern Optics Bibliography: Hecht, E., 2012. Optics. Pearson Education. India.	30%

Evaluation Percentage Recap: Project Based Learning

No	Evaluation	Percentage
1.	Participatory Activities	32.5%
2.	Project Results Assessment / Product Assessment	67.5%
		100%

Notes

- Learning Outcomes of Study Program Graduates (PLO Study Program) are the abilities possessed by each Study
 Program graduate which are the internalization of attitudes, mastery of knowledge and skills according to the level of their
 study program obtained through the learning process.
- The PLO imposed on courses are several learning outcomes of study program graduates (CPL-Study Program) which are used for the formation/development of a course consisting of aspects of attitude, general skills, special skills and knowledge.
- 3. **Program Objectives (PO)** are abilities that are specifically described from the PLO assigned to a course, and are specific to the study material or learning materials for that course.
- 4. **Subject Sub-PO (Sub-PO)** is a capability that is specifically described from the PO that can be measured or observed and is the final ability that is planned at each learning stage, and is specific to the learning material of the course.
- 5. Indicators for assessing ability in the process and student learning outcomes are specific and measurable statements that identify the ability or performance of student learning outcomes accompanied by evidence.
- Assessment Criteria are benchmarks used as a measure or measure of learning achievement in assessments based on predetermined indicators. Assessment criteria are guidelines for assessors so that assessments are consistent and unbiased. Criteria can be quantitative or qualitative.
- 7. Forms of assessment: test and non-test.
- 8. Forms of learning: Lecture, Response, Tutorial, Seminar or equivalent, Practicum, Studio Practice, Workshop Practice, Field Practice, Research, Community Service and/or other equivalent forms of learning.
- Learning Methods: Small Group Discussion, Role-Play & Simulation, Discovery Learning, Self-Directed Learning, Cooperative Learning, Collaborative Learning, Contextual Learning, Project Based Learning, and other equivalent methods.
- 10. Learning materials are details or descriptions of study materials which can be presented in the form of several main points and sub-topics.
- 11. The assessment weight is the percentage of assessment of each sub-PO achievement whose size is proportional to the level of difficulty of achieving that sub-PO, and the total is 100%.
- 12. TM=Face to face, PT=Structured assignments, BM=Independent study.