

Universitas Negeri Surabaya Faculty of Mathematics and Natural Sciences Physics Education Undergraduate Study Program

Document Code

oouc	

SEMESTER LEARNING PLAN

			L	_	_				_											_
Courses			CODE				Co	ourse	Fami	ly		Cred	lit We	ight		SEME	STER	Co Dat	mpilati e	ion
Mathematical	Physics I		842030323	35			Co	mpul	sory S	Stud	ly s	T=3	P=0	ECTS	=4.77		2	July	/ 17, 20	024
AUTHORIZAT	TION		SP Develo	oper				- 9. an			Cours	e Clu	ster C	Coordin	ator	Study	Progra	ım Co	ordina	ator
			Nugrahani	Prima	ary Pi	utri, M.	.Si.			Ī	Nugra	hani F	Primar	y Putri,	M.Si.	Mita	a Angga P	aryani, h.D	M.Pd.	,
Learning model	Case Studies	lies																		
Program	PLO study pro	gram w	hich is ch	arge	d to t	he co	ourse	;												
Learning Outcomes	Program Objectives (PO)																			
(PLO)	PO - 1	Have the ability to formulate physical systems using appropriate mathematical methods and modeling to qualitative analyze physical problems.									vely									
	PO - 2	Have t quantit	ave the ability to use physics concepts, mathematical methods and appropriate mathematical modeling to obtain uantitative solutions to physics problems.																	
	PO - 3	Have t	Have the ability to analyze physical systems by applying appropriate mathematical and modeling methods.																	
	PO - 4	Able to	o think critica	ally in	solvir	ng phy	sics	oroble	ems u	sing	appro	priate	math	ematica	al meth	nods				
	PLO-PO Matrix																			
	PO Matrix at th		P.O PO-1 PO-2 PO-3 PO-4				ıh D	0)												
	PO Matrix at th	e end (of each lea	rning	g sta	ge (Si	ub-P	0)												
			D O	1								147								
			P.0	4	2		4	-	C	-		We	ek	4.4	10	10	14	15	10	
			. 1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	l
		P0	-1 -1			$\left \right $						+								
		P0	-2			$\left \right $						+								
		P0	-3																	
		100	-4													1				
Short Course Description	This course exar function integrals	nines: I and line	inear functic e integrals, v	ons ai /ector	nd tra analy	inscen /sis, al	ident nd cu	funct	ions a ear co	and oord	their (inates	graphs throu	s, fund gh act	tion lim ive lear	nits, or ning u	dinary sing the	and par case s	tial dif tudy n	fferenti nethod	als,
References	Main :																			
	1. Varberg, 2. Boas, M.	Purcell L. 2006	, and Rigdor . Mathemati	n. 202 cal M	21. Ca ethod	llculus s in th	, 9th e Ph	ed. ysical	Scier	nce,	edisi	3, Joh	n Wile	ey & Soi	ns, Ne	w York.				
	Supporters:																			
	 Ayres an Larson a Software 	id Mend ind Edw geoget	lelson. 2013 ards. 2010. ora	. Calc Calcu	ulus, Ilus of	Schau f single	ım oı e vari	ıtlines able,	s, 6th (9th eo	ed. d.										

Support lecturer	ing Dr. Zainul Arifin II Prof. Dr. Munasir Nugrahani Primau Setyo Admoko, S Dr. Rohim Aminu Dr. Eng. Evi Suae Dr. Fitriana, S.Si.	nam Supardi, M.Si. , S.Si., M.Si. y Putri, S.Si., M.Si. .Pd., M.Pd. lah Firdaus, S.Pd, M.Si abah, M.Si., M.Sc.	i				
Week-	Final abilities of each learning stage	Eval	uation	H Lea Stude [E	elp Learning, rning methods, ent Assignments, <mark>stimated time]</mark>	Learning materials [References	Assessment Weight (%)
	(SuĎ-PO)	Indicator	Criteria & Form	Offline(offline)	Online (<i>online</i>)]	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
1	 Students are able to understand the concept of function graphs and their application to qualitatively analyze physics problems Students are able to use the function graph method to obtain solutions to quantitative problems in physics 	1. Students are able to identify linear, quadratic, cubic, trigonometric, logarithmic and exponential functions.	Criteria: Accuracy in solving problems related to linear, polynomial, trigonometric, logarithmic and exponential functions. Form of Assessment Portfolio Assessment	Lectures and discussions 3 x 50 minutes	Lectures and discussions 3 x 50	Material: 1. Linear functions, quadratic functions, cubic functions and their graphs References: Varberg, Purcell, and <i>Rigdon. 2021.</i> <i>Calculus, 9th</i> <i>ed.</i>	2%
2	 Students are able to use the function graph method to analyze physics problems both qualitatively and quantitatively Students are able to think critically in using the function graph method and apply it appropriately to solve physics problems 	 Students are able to sketch and analyze graphs of linear, polynomial, trigonometric, logarithmic and exponential functions. Students are able to create appropriate mathematical models of physics problems/cases. 	Criteria: Accuracy in solving physics problems using mathematical function modeling. Form of Assessment : Portfolio Assessment	Case study discussion 3 x 50 minutes	Case study discussion 3 x 50 minutes	Material: 2. Trigonometric, logarithmic, exponential functions and their graphs. Bibliography: Ayres and Mendelson. 2013. Calculus, Schaum outlines, 6th ed. Material: Graphs of quadratic, cubic, trigonometric, exponential and logarithmic functions. Library: Geogebra software	3%
3	 Students are able to understand the concept of limits and its application to qualitatively analyze physics problems Students are able to use the limit method to get solutions to quantitative problems in physics 	1. Students are able to solve problems related to the limits of a function.	Criteria: Accuracy in solving problems related to limits Form of Assessment : Portfolio Assessment	Lectures and discussions 3 x 50 minutes	Lectures and discussions 3 x 50 minutes	Material: Limit Theorem References: Varberg, Purcell, and Rigdon. 2021. Calculus, 9th ed. Material: Limits of trigonometric functions Reader: Ayres and Mendelson. 2013. Calculus, Schaum outlines, 6th ed.	4%

	 able to use the limit method to analyze physics problems both qualitatively and quantitatively and quantitatively Students are able to think critically in using the limit method and apply it appropriately to solve physics problems 	solve physics problems using the limit approach.	Accuracy in solving physics problems using the concept of limits. Form of Assessment : Portfolio Assessment	discussion 3 x 50 minutes	3 x 50 minutes	Infinite limits Reference: <i>Larson and</i> <i>Edwards.</i> 2010. <i>Calculus of</i> <i>single</i> <i>variables, 9th</i> <i>ed.</i>	
5	Students are able to understand the concept of differentials and their application to qualitatively analyze physics problems	Students are able to solve differential problems on polynomial, trigonometric, exponential and logarithmic functions.	Criteria: Accuracy in solving differential problems Form of Assessment : Portfolio Assessment	Lectures and discussions 3 x 50 minutes	Lectures and discussions 3 x 50 minutes	Material: Differential polynomial, trigonometric, exponential, logarithmic functions. Library: Varberg, Purcell, and Rigdon. 2021. Calculus, 9th ed.	3%
6	 Students are able to use differential methods to obtain solutions to quantitative problems in physics Students are able to use differential methods to analyze physics problems both qualitatively and quantitatively 	 Students are able to solve partial and implicit differentiation problems using the chain rule Students can solve problems related to maximum and minimum scores 	Criteria: 1.Accuracy in solving differential problems 2.Accuracy in solving maximum and minimum value questions. Form of Assessment Portfolio Assessment	Lectures and discussions 3 × 50 minutes	Lectures and discussions 3 x 50 minutes	Material: Partial differential, chain rule, implicit differential, total differential, maximum & minimum values References: Boas, ML 2006. Mathematical Methods in the Physical Science, 3rd edition, John Wiley & Sons, New York. Material: Partial differential, chain rule, implicit differential, total differential, total differential, total differential, maximum & minimum values Library: Ayres and Mendelson. 2013. Calculus, Schaum outlines, 6th ed.	3%
7	Students are able to think critically in using differential methods and apply them appropriately to solve physics problems	Students can solve physics cases using differential concepts	Criteria: Accuracy in solving physics cases using differential concepts Form of Assessment : Portfolio Assessment	Case study discussion 3 x 50 minutes	Case study discussion 3 x 50 minutes	Material: Differential function graphs Library: Geogebra software	4%
8	 Students are able to understand the concept of function graphs and their application to qualitatively analyze physics problems. Students are able to 	 Students are able to create appropriate mathematical models of physics problems/cases. Students are able to solve physics problems using 	Criteria: 1.Accuracy in solving physics problems using mathematical function modeling. 2.Accuracy in solving physics problems using the concept of limits.	2 x 50 minute midterm exams	2 x 50 minute midterm exams	Material: Ch 0, 1, 2, 3 References: Varberg, Purcell, and Rigdon. 2021. Calculus, 9th ed. Material: Ch 4 References: Boas, ML	20%

understand the concept of limits and its application to qualitatively analyze physics problems 3. Students are able to understand the concept of differentials and their application to qualitatively analyze physics problems 4. Students are able to use the function graph method to obtain solutions to quantitative problems in physics 5. Students are able to use the limit method to get solutions to quantitative problems in physics 6.Students are able to use differential methods to obtain solutions to quantitative problems in physics 7.Students are able to use the function graph method to analyze physics problems both qualitatively and quantitatively 8.Students are able to use the limit method to analyze physics problems both qualitatively and quantitatively 9. Students are able to use differential methods to analyze physics problems both , qualitatively and quantitatively 10.Students are able to think critically in using the function graph method and apply it appropriately to solve physics problems 11.Students are able to think critically in using the limit method and apply it appropriately to solve physics problems 12.Students are able to think critically in using differential methods and apply them appropriately to

the limit approach. 3.Students can solve physics cases using differential

concepts

3.Accuracy in solving physics cases using differential concepts.

Form of Assessment

Test

2006. Mathematical Methods in the Physical Science, 3rd edition, John Wiley & Sons, New York. Material: Ch 7, 9, 10, 11, 14, 25, 26 Bibliography: Ayres and Mendelson. 2013. Calculus, Schaum outlines, 6th ed. Material: Ch 1235 Bibliography: Larson and Edwards. 2010. Calculus of single variables, 9th ed.

	solve physics problems						
9	Students are able to understand integral concepts and their application to qualitatively analyze physics problems	Students are able to integrate functions	Criteria: Accuracy in solving function integration problems Form of Assessment : Portfolio Assessment	Lectures and discussions 3 × 50 minutes	Lectures and discussions 3 x 50 minutes	Material: Integral function theorem References: Varberg, Purcell, and Rigdon. 2021. Calculus, 9th ed.	3%
10	 Students are able to use integral methods to obtain solutions to quantitative problems in physics Students are able to use integral methods to analyze physics problems both qualitatively and quantitatively 	Students are able to carry out fold integration	Criteria: Accuracy in solving fold integration problems Form of Assessment : Portfolio Assessment	Lectures and discussions 3 × 50 minutes	Lectures and discussions 3 x 50 minutes	Material: Integration techniques References: Boas, ML 2006. Mathematical Methods in the Physical Science, 3rd edition, John Wiley & Sons, New York.	3%
11	Students are able to think critically in using the integral method and apply it appropriately to solve physics problems	Students are able to apply integration concepts to solve physics cases	Criteria: Accuracy in solving physics cases using integral concepts Form of Assessment : Portfolio Assessment	Case study discussion 3 x 50 minutes	Case study discussion 3 x 50 minutes	Material: ch 3, 7, 8 References: Ayres and Mendelson. 2013. Calculus, Schaum outlines, 6th ed.	4%
12	 Students are able to understand the concept of vector analysis and its application to qualitatively analyze physics problems Students are able to use vector analysis methods to obtain solutions 	 Students are able to do vector algebra and determine the application of vector algebra in the field of physics Students are able to differentiate vectors 	Criteria: 1.Accuracy in solving physics problems related to vector algebra 2.Accuracy in solving physics problems related to vector differentiation Form of Assessment Portfolio Assessment	Lectures and discussions 3 x 50 minutes	Lectures and discussions 3 x 50 minutes	Material: Vector algebra and differentiation References: Varberg, Purcell, and Rigdon. 2021. Calculus, 9th ed. Material: Ch 6 References: Boas, ML 2006. Mathomatical	5%
	to quantitative problems in physics					Methods in the Physical Science, 3rd edition, John Wiley & Sons, New York.	

14	 Students are able to understand the concept of coordinate transformation and its application to qualitatively analyze physics problems Students are able to use the coordinate transformation method to obtain solutions to quantitative problems in physics 	Students are able to determine vector components in cylindrical and spherical coordinates	Criteria: Accuracy in making a summary of vector component transformations from Cartesian to cylindrical coordinates, and Cartesian to spherical coordinates Form of Assessment : Portfolio Assessment	Lectures and discussions 3 x 50 minutes	Lectures and discussions 3 x 50 minutes	Material: Ch 1 Bibliography: Ayres and Mendelson. 2013. Calculus, Schaum outlines, 6th ed. Material: Cartesian coordinates, cylindrical coordinates, spherical coordinates Reference: Geogebra software	3%
15	 Students are able to use the coordinate transformation method to analyze physics problems both qualitatively and quantitatively Students are able to think critically in using the coordinate transformation method and apply it appropriately to solve physics problems 	 Students are able to determine the unit vector transformation from Cartesian coordinates to cylindrical and spherical coordinates Students are able to analyze kinematic quantities in Cartesian, cylindrical and spherical coordinates. 	Criteria: Accuracy in solving problems related to coordinate transformation Form of Assessment : Portfolio Assessment	Discussion and case study 3 x 50 minutes	Discussion and case study 3 x 50 minutes	Material: Ch 6 Bibliography: Ayres and Mendelson. 2013. Calculus, Schaum outlines, 6th ed.	4%
16	 Students are able to understand integral concepts and their application to qualitatively analyze physics problems Students are able to understand the concept of vector analysis and its application to qualitatively analyze physics problems Students are able to understand the concept of coordinate transformation and its application to qualitatively analyze physics problems Students are able to understand the concept of coordinate transformation and its application to qualitatively analyze physics problems Students are able to use integral methods to obtain solutions to quantitative problems in physics Students are able to use vector analysis methods to obtain solutions to quantitative problems in physics Students are 	 Students are able to apply integration concepts to solve physics cases Students are able to perform vector operations on physics problems using vector operators Students are able to analyze kinematic quantities in Cartesian, cylindrical and spherical coordinates. 	Criteria: 1.Accuracy in solving physics cases using integral concepts 2.Accuracy in solving physics problems using vector operators 3.Accuracy in solving problems related to coordinate transformation Form of Assessment : Test	Final Exam Semester 2 x 50 minutes	Final Exam Semester 2 x 50 minutes	Material: Ch 4, 5, 11 References: Varberg, Purcell, and Rigdon. 2021. Calculus, 9th ed. Material: Ch 5, 6 References: Boas, ML 2006. Mathematical Methods in the Physical Science, 3rd edition, John Wiley & Sons, New York. Material: Ch 1, 2, 6, 29, 34, 39 References: Ayres and Mendelson. 2013. Calculus, Schaum outlines, 6th ed. Material: Ch 4, 7, 8 Bibliography: Larson and Edwards. 2010. Calculus of single variables, 9th ed.	30%

I I	1	I	1	I	Ì	i i
able to use the						
coordinate						
transformation						
method to						
obtain solutions						
to quantitative						
problems in						
physics						
7.Students are						
able to use						
integral						
integral						
methods to						
analyze physics						
problems both						
gualitatively and						
quantitatively						
8 Students are						
0.Students are						
able to use						
vector analysis						
methods to						
analyze physics						
nrohlems both						
qualitativaly and						
qualitatively and						
quantitatively						
9.Students are						
able to use the						
coordinate						
transformation						
mothed to						
method to						
analyze physics						
problems both						
gualitatively and						
guantitatively						
10 Students are						
able to think						
able to trillink						
critically in						
using the						
integral method						
and apply it						
appropriately to						
solve physics						
problems						
11.Students are						
able to think						
critically in						
using vector						
analysis						
aiidiysis mathada and						
methous and						
apply them						
appropriately to						
solve physics						
problems						
12 Students are						
able to think						
critically in						
using the						
coordinate						
transformation						
mothod and						
apply it						
appropriately to						
solve physics						
problems						
	1	l		l		

Evaluation Percentage Recap: Case Study

No	Evaluation	Percentage	
1.	Portfolio Assessment	50%	
2.	Test	50%	
		100%	

Notes

- 1. Learning Outcomes of Study Program Graduates (PLO Study Program) are the abilities possessed by each Study Program graduate which are the internalization of attitudes, mastery of knowledge and skills according to the level of their study program obtained through the learning process.
- Study program obtained through the learning process.
 The PLO imposed on courses are several learning outcomes of study program graduates (CPL-Study Program) which are used for the formation/development of a course consisting of aspects of attitude, general skills, special skills and knowledge.
 Program Objectives (PO) are abilities that are specifically described from the PLO assigned to a course, and are specific to the study material or learning materials for that course.
 Subject Sub-PO (Sub-PO) is a capability that is specifically described from the PO that can be measured or observed and is the learning material of the course.
- the final ability that is planned at each learning stage, and is specific to the learning material of the course.

- 5. Indicators for assessing ability in the process and student learning outcomes are specific and measurable statements that identify the ability or performance of student learning outcomes accompanied by evidence.
- 6. Assessment Criteria are benchmarks used as a measure or measure of learning achievement in assessments based on predetermined indicators. Assessment criteria are guidelines for assessors so that assessments are consistent and unbiased. Criteria can be quantitative or qualitative.
- 7. Forms of assessment: test and non-test.
- 8. Forms of learning: Lecture, Response, Tutorial, Seminar or equivalent, Practicum, Studio Practice, Workshop Practice, Field Practice, Research, Community Service and/or other equivalent forms of learning.
- 9. Learning Methods: Small Group Discussion, Role-Play & Simulation, Discovery Learning, Self-Directed Learning,
- Cooperative Learning, Collaborative Learning, Contextual Learning, Project Based Learning, and other equivalent methods. 10. Learning materials are details or descriptions of study materials which can be presented in the form of several main points and sub-topics.
- 11. The assessment weight is the percentage of assessment of each sub-PO achievement whose size is proportional to the level of difficulty of achieving that sub-PO, and the total is 100%.
- 12. TM=Face to face, PT=Structured assignments, BM=Independent study.