

Universitas Negeri Surabaya Faculty of Mathematics and Natural Sciences Physics Education Undergraduate Study Program

Document Code

SEMESTER LEARNING PLAN

Courses			CODE			Cour	se Fa	mily			Cred	it Weig	ht	S	EMES	TER	Co Da	mpilatioı te
Magnetic Ele	ctricity		8420303115	5		Comp Subje		y Stud	y Prog	jram	T=3	P=0	ECTS=4	.77		4	Jul	y 17, 202
AUTHORIZAT	ΓΙΟΝ		SP Develop	er		Gable			Co	urse	Cluste	er Coo	rdinator	s	tudy P	rogran	n Coor	dinator
			Diah Hari Kı	Kusumawati, M.Si Dia				Dia	Diah Hari Kusumawati, M.Si					Mita Anggaryani, M.Pd., Ph.D.				
Learning model	Project Based L	earning)															
Program Learning	PLO study prog	gram w	vhich is cha	rged to t	the cou	irse												
Outcomes	Program Object	tives (PO)															
(PLO)	PO - 1		the ability to s, in this case					ropria	te con	cepts	s to qu	ıalitativ	ely anal	yze p	roblems	s or sit	uations	s involvin
	PO - 2	Demor	nstrate a resp	onsible a	ttitude t	oward	s worl	< in the	eir field	l of e	xpertis	e indep	endently	y				
	PO - 3	quanti	the ability to tative problen	ns in solvi	ng mag	netic e	electric	city pro	blems	S						s to ob	otain s	olutions t
	PO - 4	Master	ring the mate	rials, strue	ctures a	nd cor	ncepts	s of ph	ysics a	and th	neir ap	plicatio	n in tech	nolog	у			
	PO - 5	Implen and ph	nenting high nenomena, es	level thin pecially r	king pro nagneti	cesse c elect	es (crit ricity,	tical, c both ii	reative	e, log /ely a	ical, a Ind dec	nd pro ductive	blem sol y	lving)	in stud	ying pł	nysical	processe
	PO - 6	qualita	symbolic an tively and qu	antitativel	у						0			•				
	PO - 7	I	o work indepe	ndently o	r collab	orate i	n grou	ups on	lectur	e ass	signme	nts and	l practica	al activ	/ities in	the lab	oratory	/
	PLO-PO Matrix																	
			P.O PO-1 PO-2 PO-3 PO-4 PO-5 PO-6 PO-7															
	PO Matrix at th	e end o	of each lear	ning sta	ge (Su	b-PO))											
			P.0								Weel	K						
				1 2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
		PO	-1															
		PO	-2															
		PO	-3															
		PO	-4															
		PO	-5															
		PO																
		PO																
			1			1		1					11					
		<u>. </u>																

Short Course Descript	field, Coulomb's equation and Poi polarization charg Lorentz force, B Ampere's law for	law, electric field, Gau isson's equation, bounn ge, displacement vector iot-Savart law, vector H, magnetic materials, nethod and carrying o	udes a discussion of the c uss's law, electric potentia dary conditions, shadow r or D, Gauss's law for D. E potential, Ampere's law, r hysteresis. Magnetic effe ut activities in the laborat	al, electric dipole, method, variable s Electric Current: fl magnetic dipole n cts, displacement	efectric energy multipo separation method. diele ow of electric charge, co noment, switch potentia currents, Maxwell's equa	le, field energy dens ctric materials: polar pontinuity equation. M I, magnetization, ma ations. Learning is ca	sity, Laplace's rization vector, lagnetic fields: agnetic poles, wried out using	
Referen	-							
			ion to Electrodynamics, Fo Lisrik Magnet. TIM Listrik I		tice Hall, International ec	lition		
	Supporters:							
	2. Reitz, JF	 Mahmud Zaki, 2000. Medan Elektromagnetik (Bagian I). Jurusan Fisika FMIPA ITS. Reitz, JR. & Milford, FJ. 1990. Foundations of Elektromagnetic Theory. Third Edition Addison-Wesley Publishing Company Reading Masschusetts MenloPark. California 						
Support lecturer	Abd. Kholiq, S.Po Endah Rahmawa	ati, S.T., M.Si. Illah Firdaus, S.Pd, M.S	Si					
Week-	Final abilities of each learning stage	Eva	luation	Learn Studen	p Learning, ing methods, t Assignments, imated time]	Learning materials	Assessment Weight (%)	
	(Sub-PO)	Indicator	Criteria & Form	Offline (offline)	Online (<i>online</i>)			
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	
1	Analyze the concepts of electrostatic fields in solving questions and problems in natural events.	 Applying the concept of interaction force of point charges which is a fundamental law of electricity Calculate the electric field strength in a vacuum around an electric charge 	Criteria: Able to work on questions about interaction forces on charges and electric field strength (Quantitative) Form of Assessment : Participatory Activities	Form: Lecture • Discussion • Problem Solving • Independent assignment • Power point media (PPT 2x50 minutes	2 x 50 minute discussions	Material: Electrostatic fields Bibliography: David j Griffiths, 2013, Introduction to Electrodynamics, Fourth edition, Prentice Hall, International edition Material: Coulomb law Reference: David j Griffiths, 2013, Introduction to Electrodynamics, Fourth edition, Prentice Hall, International edition	3%	
2	Analyze the concepts of electrostatic fields in solving questions and problems in natural events.	Analyzing electric field strength for continuously distributed charges.	Criteria: Able to explain and determine electric field strength (Quantitative and independent assignment) Form of Assessment : Participatory Activities	Form: Lecture • Discussion • Problem Solving • Independent assignment • Power point media (PPT 2x50 minutes	2 x 50 minute discussions	Material: Electric field Reference: David j Griffiths, 2013, Introduction to Electrodynamics, Fourth edition, Prentice Hall, International edition Material: Continuous charge distribution Reference: David j Griffiths, 2013, Introduction to Electrodynamics, Fourth edition, Prentice Hall, International edition	3%	

3	Analyze electric field strength by applying Gauss's Law and the curl operator.	 Apply Gauss's Law to calculate electric field strength Apply the concept of Divergence and Curl to determine the electric field strength. Comparing the results of electric field calculations with mathematical methods and Gauss's Law 	Criteria: Able to explain and determine electric field strength (Quantitative and independent assignment) Form of Assessment : Participatory Activities	Form: Lecture • Discussion • Problem solving • Independent assignment • Power point media (PPT) 2x50 minutes	Independent assignments 2x50 minutes	Material: Divergence and curl of electrostatic fields Reference: Mahmud Zaki, 2000. Electromagnetic Fields (Part I). ITS FMIPA Physics Department. Material: Gauss's Law field lines and Applications of Gauss's Law Reference: David j Griffiths, 2013, Introduction to Electrodynamics, Fourth edition, Prentice Hall, International edition Material: Curl of electric fields. Bibliography: David j Griffiths, 2013, Introduction to Electrodynamics, Fourth edition, Prentice Hall, International edition	3%
4	 Analyze and carry out measurements related to charging and discharging capacitors Analyze the electric field strength by applying Gauss's Law and the curl operator. 	 Able to analyze and carry out measurements related to charging and discharging capacitors or Faraday's Law Comparing the results of electric field calculations with mathematical methods and Gauss's Law 	Criteria: 1.Able to analyze and carry out measurements related to charging and discharging capacitors or Faraday's Law 2.Able to explain and determine electric field strength using Gauss's Law (Quantitative and independent assignment) Forms of Assessment Participatory Activities, Portfolio Assessment, Practical Assessment	Practice 3x50 minutes	Independent assignments 2x50 minutes	Material: Capacitors Library: TIM. Magnetic Electrical Practical Guidebook. Manget Electricity TEAM, 2018	10%

5	Analyze the concept of electric potential of charge with different methods	Analyzing electric potential with Laplace and Poisson's equations	Criteria: Can identify electric potential using Laplace and Poisson's equations well and independently Form of Assessment : Participatory Activities	Form: Lecture • Discussion • Problem solving • Independent assignment • Power point media (PPT) 2x50 minutes	2 x 50 minute discussions	Material: Electric potential Reference: David j Griffiths, 2013, Introduction to Electrodynamics, Fourth edition, Prentice Hall, International edition Material: Poisson's and Laplace's equations Reference: David j Griffiths, 2013, Introduction to Electrodynamics, Fourth edition, Prentice Hall, International edition Material: Potential of localized charge distribution Reference: David j Griffiths, 2013, Introduction to Electrodynamics, Fourth edition, Prentice Hall, International edition Reference: David j Griffiths, 2013, Introduction to Electrodynamics, Fourth edition, Prentice Hall, International edition	4%
6	 Analyze the concept of electric potential of charge with different methods Analyze and carry out measurements related to RLC or electric current balance circuits 	 Determines the electric potential from localized charge distribution Able to analyze and carry out measurements related to RLC or Electric Current Balance circuits 	Criteria: 1.Able to carry out RLC or electric current balance circuit practicum according to the module well and report the practicum results in the form of a practicum report 2.Can solve problems related to fields, potential, charge distribution at the boundary between media and multipole expansion well and independently Form of Assessment : Participatory Activities, Practical Assessment	Form: Lecture • Discussion • Problem solving • Independent assignment • Power point media (PPT) 2x50 minutes	2 x 50 minute discussions	Material: Electrostatics in boundary conditions Reference: David j Griffiths, 2013, Introduction to Electrodynamics, Fourth edition, Prentice Hall, International edition Material: Multipole Expansion Bibliography: David j Griffiths, 2013, Introduction to Electrodynamics, Fourth edition, Prentice Hall, International edition	10%
7	Analyze the concept of electric potential of charge with different methods	Analyze the relationship between field, potential, and charge distribution at the boundary between media	Criteria: Can solve problems related to fields, potential, charge distribution at the boundary between media and multipole expansion well and independently Form of Assessment : Participatory Activities	Practicum 3x50 minutes	Independent assignments 2x50 minutes	Material: RLC circuit Library: TIM. Magnetic Electrical Practical Guidebook. Manget Electricity TEAM, 2018	3%

8	 Analyze the concepts of electrostatic fields in solving questions and problems in natural events. Analyze the electric field strength by applying Gauss's Law and the curl operator Analyze the concept of electric potential of charge with different methods 	Maximum score if the questions are done well and correctly	Criteria: Quantitative, test Form of Assessment : Test	Midterm 2x50 minutes	Independent assignments 2x50 minutes	Material: Chapters 1-3 Bibliography: David j Griffiths, 2013, Introduction to Electrodynamics, Fourth edition, Prentice Hall, International edition	15%
9	Determine the potential energy of discrete charges and continuous distributed charges	 Determines the potential energy of a discrete charge from an infinite position to a specified distance from the charge Determining the potential energy from discrete charges to the case of continuous distributed charges 	Criteria: Identify potential energy for discrete charges under various conditions Form of Assessment : Participatory Activities	Form: Lecture • Discussion • Problem solving • Independent assignment • Power point media (PPT) 2x50 minutes		Material: Discrete charge potential energy Reference: David j Griffiths, 2013, Introduction to Electrodynamics, Fourth edition, Prentice Hall, International edition Material: Electrostatic field energy Bibliography: David j Griffiths, 2013, Introduction to Electrodynamics, Fourth edition, Prentice Hall, International edition	3%

10	Analyzing several methods for calculating electrical potential energy for physical systems adapted to the coordinate system	 Determining the potential in areas far from the charge source using the multipole expansion method Explain the uniqueness of the solution of electrostatic problems with theorems on 	Criteria: Determine the solution to electrostatic problems with multipole expansion and potential and charge limit theorems Form of Assessment : Participatory Activities	Form: Lecture • Discussion • Problem solving • Independent assignment • Power point media (PPT) 2x50 minutes	Independent assignment, making a poster on magnetism material 2x50 minutes	Material: Multipole Expansion Bibliography: David j Griffiths, 2013, Introduction to Electrodynamics, Fourth edition, Prentice Hall, International edition Material: Uniqueness of	4%
		potential limits and charge limits				solutions to electrostatic problems • Theorem I uniqueness of potential limits • Theorem II uniqueness of charge limits References: David j Griffiths, 2013, Introduction to Electrodynamics, Fourth edition, Prentice Hall, International edition	
						Material: Variable separation method o Cartesian coordinates o Spherical coordinates o Cylindrical coordinates o Cylindrical coordinates Reference: David j Griffiths, 2013, Introduction to Electrodynamics, Fourth edition, Prentice Hall, International edition	
						Material: Shadow method Induced charge Potential energy References: David j Griffiths, 2013, Introduction to Electrodynamics, Fourth edition, Prentice Hall, International edition	

11	Analyzing several methods for calculating electrical potential energy for physical systems adapted to the coordinate system	 1.Analyze mathematically the physical system of electrical potential energy (from the shape and symmetry of the system in question) adjusted to the selection of a particular coordinate system and the variables used 2.Explains other methods of determining potential for charge distribution systems and grounded conductor surfaces as well as determining potential energy 	Criteria: Create a resume, explain and discuss potential energy physical systems for charge distribution systems Form of Assessment : Participatory Activities	Form: Lecture • Discussion • Problem solving • Independent assignment • Power point media (PPT) 2x50 minutes	Continue making posters 2x50 minutes	Material: Multipole Expansion Bibliography: David j Griffiths, 2013, Introduction to Electrodynamics, Fourth edition, Prentice Hall, International edition Material: Uniqueness of solutions to electrostatic problems • Theorem I uniqueness of potential limits • Theorem II uniqueness of potential limits • Theorem II uniqueness of potential limits • Theorem II uniqueness of charge limits References: David j Griffiths, 2013, Introduction to Electrodynamics, Fourth edition, Prentice Hall, International edition Material: Variable separation method o Cartesian coordinates o Spherical coordinates o Cylindrical coordinates, Fourth edition, Prentice Hall, Introduction to Electrodynamics, Fourth edition, Prentice Hall, Introduction to Electrodynamics, Fourth edition, Prentice Hall, International edition	4%
12	Apply the concept of potential and multipole expansion of static (magnetostatic) fields and the underlying laws	 Explain the concept of magnetic materials and magnetic field lines Applying the concept that charges moving in a magnetic field will experience Lorentz forces Explain the concept of current and current density in a physical system with a magnetic field Linking current and magnetic fields 	Criteria: Create a resume, describe and discuss magnetic materials and the laws underlying magnetic characteristics as well as the relationship between current and magnetic fields Form of Assessment : Participatory Activities	3 x 50 minute discussions	Independent Assignment 2x50 minutes	Material: Faraday's Law Reference: TIM. Magnetic Electrical Practical Guidebook. Manget Electricity TEAM, 2018	4%

	1			1			
13	Apply the concept of potential and multipole expansion of static (magnetostatic) fields and the underlying laws	 Apply/apply divergence and curl operators to magnetic field equations to determine the magnetic field of a physical Applying Ampere's Law in calculating magnetic fields in differential and integral form Apply the definition of magnetic vector potential to solve the fundamental differential law of Relates the relationship between magnetic field, potential and current density at the boundary surface between two media Determining the multipole expansion, especially the dipole term in the magnetic vector potential 	Criteria: Determining the multipole expansion in the magnetic vector potential Form of Assessment : Participatory Activities	Form: Lecture • Lecture • Discussion • Problem solving • Practice questions • Power point media (PPT) 2x50 minutes	Presentation of product results 2x50 minutes	Material: Magnetic field 1. Introduction 2. Lorentz force 3. Current distribution force 4. Biot-Savart law Bibliography: David j Griffiths, 2013, Introduction to Electrodynamics, Fourth edition, Prentice Hall, International edition Material: Magnetostatic differential equations and Ampere's law 1. Divergence of magnetic fields 2. Curl of magnetic fields 3. Ampere's law Bibliography: David j Griffiths, 2013, Introduction to Electrodynamics, Fourth edition, Prentice Hall, International edition Material: Vector potential • Magnetostatic boundary conditions • Magnetic dipole moment References: David j Griffiths, 2013, Introduction to Electrodynamics, Fourth edition, Prentice Hall, International edition	5%

14	Analyze concepts related to electrical motion, Ohm's law, Faraday's and Lenz's laws and obtain solutions to electromagnetic wave equations and the propagation of energy and momentum.	 Analyzing the relationship between the movement of charges in a closed path traversed by the electric field itself which is an empirical constant Analyzing the concept of Faraday's law of induction and Lenz's principle in constant magnetic fields and magnetic fields changing with time Determines the magnetic field energy of a field that changes with time 	Criteria: Explain the magnetic concept of charges moving in closed paths, constant fields and fields that change with time Form of Assessment : Participatory Activities	Form: Lecture • Discussion • Problem Solving • Practice questions • Power point media (PPT) 2x50 minutes	Presentation of poster results 2x50 minutes	Material: Electrodynamics • Electromotive force and ohm's law 1. Electromotive force 2. Ohm's law Reference: David J Griffiths, 2013, Introduction to Electrodynamics, Fourth edition, Prentice Hall, International edition Material: Faraday's law of induction 1. Electromagnetic induction 2. Inductance. 3. Magnetic field energy Bibliography: David J Griffiths, 2013, Introduction to Electrodynamics, Fourth edition, Prentice Hall, International edition Material: Maxwell: • Inconsistencies in the electromagnetic equations • Maxwell's equations Reference: David J Griffiths, 2013, Introduction to Electrodynamics, Fourth edition, Prentice Hall, International edition Material: Electromagnetic equations • Maxwell's equations • Plane waves • Energy and momentum propagation References: David J Griffiths, 2013, Introduction to Electrodynamics, Fourth edition, Prentice Hall, International edition	4%
15	Determining the inconsistency of Maxwell's equations and describing the electromagnetic wave equation from Maxwell's equations (case study)	 Explain the inconsistency of the electromagnetic equation (Ampere's law) Explaining Maxwell's equations as a result of "improving" Ampere's law Able to explain, describe and communicate about the applications of electromagnetic waves 	Criteria: 1.Able to describe the form and application of electromagnetic waves in everyday life 2.Identify the mathematical form of Maxwell's equation in electromagnetic waves Forms of Assessment : Participatory Activities, Portfolio Assessment, Practical Assessment	3x50 minute discussion	Independent assignments 2x50 minutes	Material: Electric Current Balance Library: TIM. Magnetic Electrical Practical Guidebook. Manget Electricity TEAM, 2018	10%

16	UAS	Presentation of each group's products as UAS scores	Criteria: Presentation of the results of a review of material on the application of electromagnetic waves in everyday life Form of Assessment : Test	Presentation of the results of discussion on the application of electromagnetic waves with products in the form of posters 2x50 minutes	Poster Product Presentation 4x50 minutes	Material: UAS Reader: David j Griffiths, 2013, Introduction to Electrodynamics, Fourth edition, Prentice Hall, International edition	15%
----	-----	--	--	--	--	--	-----

Evaluation Percentage Recap: Project Based Learning

No	Evaluation	Percentage
1.	Participatory Activities	51.66%
2.	Portfolio Assessment	6.66%
3.	Practical Assessment	11.66%
4.	Test	30%
		99.98%

Notes

- 1. Learning Outcomes of Study Program Graduates (PLO Study Program) are the abilities possessed by each Study Program graduate which are the internalization of attitudes, mastery of knowledge and skills according to the level of their study program obtained through the learning process.
- 2. The PLO imposed on courses are several learning outcomes of study program graduates (CPL-Study Program) which are used for the formation/development of a course consisting of aspects of attitude, general skills, special skills and knowledge.
- 3. Program Objectives (PO) are abilities that are specifically described from the PLO assigned to a course, and are specific to the study material or learning materials for that course.
- 4. **Subject Sub-PO (Sub-PO)** is a capability that is specifically described from the PO that can be measured or observed and is the final ability that is planned at each learning stage, and is specific to the learning material of the course.
- 5. Indicators for assessing abilities in the process and student learning outcomes are specific and measurable statements that identify the abilities or performance of student learning outcomes accompanied by evidence.
- 6. Assessment Criteria are benchmarks used as a measure or measure of learning achievement in assessments based on predetermined indicators. Assessment criteria are guidelines for assessors so that assessments are consistent and unbiased. Criteria can be quantitative or qualitative.
- 7. Forms of assessment: test and non-test.
- 8. Forms of learning: Lecture, Response, Tutorial, Seminar or equivalent, Practicum, Studio Practice, Workshop Practice, Field Practice, Research, Community Service and/or other equivalent forms of learning.
- 9. Learning Methods: Small Group Discussion, Role-Play & Simulation, Discovery Learning, Self-Directed Learning, Cooperative Learning, Collaborative Learning, Contextual Learning, Project Based Learning, and other equivalent methods.
- 10. Learning materials are details or descriptions of study materials which can be presented in the form of several main points and subtopics.
- 11. The assessment weight is the percentage of assessment of each sub-PO achievement whose size is proportional to the level of difficulty of achieving that sub-PO, and the total is 100%.
- 12. TM=Face to face, PT=Structured assignments, BM=Independent study.