

Universitas Negeri Surabaya Faculty of Engineering, Mechanical Engineering Undergraduate Study Program

Document Code

c	U	uc	

SEMESTER LEARNING PLAN

Courses			CODE				Cou	rse Fa	amily	,	C	Credit	Weig	ht	5	SEMES	TER	Cor Dat	npilatior e	٦
Engineering I	Materials 2		2120102113	3			Com	pulso	ry Stu	udy	1	'=2 F	P=0 E	ECTS=3.	8	2	2	July	12, 202	2
AUTHORIZAT	ION		SP Develop	oer			Prog	jram S	Subje		urse	Clust	er Co	ordinato	r s	Study F	Progra	m Co	ordinato	r
			Novi Sukma Drastiawati				Nov	Novi Sukma Drastiawati					Ir. Priyo Heru Adiwibowo,							
Learning model	Case Studies																			
Program	PLO study pro	aram	that is char	aed :	to the	- COI	irse													
Learning Outcomes	PLO-5	- -	independent	•																
(PLO)	PLO-11		n and develo					at tak	e into	acco	ount t	he en	vironm	nent and	susta	ainabilit	y			
	PLO-14	Scien	r Ice and engin	ieerin	g kno	wledg	ge										-			
	Program Obje	ctives	(PO)		-		-													
	PO - 1	situati relate	to Identify ion (What kn d courses c. a performance	owleo Able t	dge is to der	need nonst	ded) I trate a	b. Able approp	e to o priate	chang	ge re	al wor	ld situ	iations in	to m	nodels t	that are	e appi	opriate t	0
	PO - 2	exper	to obtain da imental data en models a	and	resul	ts wi	priate th ap	e varia propri	ables ate t	in t heore	he fi etical	eld of mode	Mec els. c.	hanical E Be able	Engir to	neering explain	. b. Al obser	ble to ved d	compar ifference	es
	PO - 3	a Able	e to formulate	e prob	lems	(iden	tify													
	PLO-PO Matrix	(
			P.O PO-1 PO-2 PO-3		PL	0-5		P	LO-1	1		PLO	9-14							
	PO Matrix at th	ne end	of each lea	rnin	g sta	ge (S	Sub-F	PO)												
			P.0		_		1	1			1	Wee	ek		_					
				1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
		_	D-1																	
		PC	D-2																	
		PC	D-3																	
Short Course Description	This course disc and non-metallic	cusses materi	mechanical s als, standard	streną izatio	gth in n of n	cera on-fe	mics, rrous	polyn steel	ners a and r	and d non-n	comp netall	osites ic mat	, heat erials,	treatmen and cas	nt pr e-ba	ocesse sed lea	s for n rning (on-fer case s	rous stee study).	el
References	Main :																			

Support lecturer	2. [2] Suhe 3. [3] Callis 4. [4] Smiti Compar 5. [5] Smiti York 6. [6] Diete Supporters: 1. [7] Van 2. [8] J.F. S ing Mochamad Arif I Tri Hartutuk Ning Novi Sukma Dra	erman, W. 1999. Ilmu ster, William D. 2003. h, William F. Hashem nies, Inc: New York h, William F. 1993. Str er, G.E, Mechanical M Vlack, Djaprie, S., Ilm Shackelford, Introduct rfa'i, S.Pd., M.T. gsih, S.T., M.T. stiawati, S.T., M.Eng.	i, Javad. 2006. Foundati ructure and Properties of etallurgy, Mc-Graw Hill, u dan Teknologi Bahan, ion to material Science f	Surabaya Igineering An I Ions of Materia Engineering A 1988 Edisi IV, Erlan		ng. Fourth Edition	. Mc-Graw-Hill
Week-	Hanna Zakiyya, Final abilities of each learning stage (Sub-PO)	Eva	luation	Lear Stude [E	elp Learning, rning methods, ent Assignments, stimated time]	Learning materials [References]	Assessment Weight (%)
	(505-10)	Indicator	Criteria & Form	Offline(offline)	Online (<i>online</i>)		
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
1	Describe grain boundary strengthening, solid solution, strain hardening, and precipitation strengthening)	 Students are able to describe grain boundary strengthening, solid solution, strain hardening, and precipitation strengthening Students are able to explain grain boundary strengthening, solid solutions, strain hardening, precipitation strengthening Students are able to describe grain boundary strengthening, solid solution, strain hardening, precipitation strengthening 	Criteria: 1.According to the Engineering Rubric: Participation, Written test, (Quiz-1) 2.Score criteria: Special: 90 to 100; Very good: 76 to 89; Average: 56 to 75; Below average: 0 to 55 Form of Assessment : Participatory Activities, Tests	Lectures, discussions and questions and answers 2 X 50		Material: Explains the 4 metal strengthening mechanisms along with their pictures. Depiction of strain hardening. Depiction of precipitation strengthening. Depiction of grain boundary strengthening. References: [1] Suherman, W. 1999. Metal Science 1. ITS Publisher: Surabaya Material: Explaining the mechanism of metal strengthening along with pictures. Describing strain hardening . Sixth Edition. John Wiley & Sons, Inc: USA	1%

		1				
2	Describe grain boundary strengthening, solid solution, strain hardening, and precipitation strengthening)	 Students are able to describe grain boundary strengthening, solid solution, strain hardening, and precipitation strengthening Students are able to explain grain boundary strengthening, solid solutions, strain hardening, precipitation strengthening Students are able to describe grain boundary strengthening, solid solution, strain hardening, precipitation strengthening, solid solution, strain hardening, precipitation strengthening, solid solution, strain hardening, precipitation strengthening 	Criteria: 1.According to the Engineering Rubric: Participation, Written test, (Quiz-1) 2.Score criteria: Special: 90 to 100; Very good: 76 to 89; Average: 56 to 75; Below average: 0 to 55 Form of Assessment : Participatory Activities, Tests	Lectures, discussions and questions and answers 2 X 50	Material:Explains the 4 metalstrengthening mechanisms along with their pictures.Depiction of strain hardening.Depiction of precipitation strengthening.Depiction of grain boundary strengthening.References:[1] Suherman, W. 1999. Metal Science 1. ITS Publisher: SurabayaMaterial:Explaining the mechanism of metal strengthening along with pictures . Describing strain hardening . . Sixth Edition. John Wiley & Sons, Inc: USA	
3	Describe grain boundary strengthening, solid solution, strain hardening, and precipitation strengthening)	 Students are able to describe grain boundary strengthening, solid solution, strain hardening, and precipitation strengthening Students are able to explain grain boundary strengthening, solid solutions, strain hardening, precipitation strengthening Students are able to describe grain boundary strengthening, solid solution, strain hardening, precipitation strengthening 	Criteria: 1.According to the Engineering Rubric: Participation, Written test, (Quiz-1) 2.Score criteria: Special: 90 to 100; Very good: 76 to 89; Average: 56 to 75; Below average: 0 to 55 Form of Assessment : Participatory Activities, Tests	Lectures, discussions and questions and answers 2 X 50	Material:Explains the 4 metalstrengthening mechanisms along with their pictures.Depiction of strain hardening.Depiction of precipitation strengthening.Depiction of grain boundary strengthening.References: [1] Suherman, W. 1999. Metal Science 1. ITS Publisher: SurabayaMaterial: Explaining the mechanism of metal strengthening along with pictures.Describing strain hardening . Sixth Edition. John Wiley & Sons, Inc: USA	

			[1	r1		
4	Describe aluminum and its alloys and copper and its alloys	 1.Able to describe aluminum and its alloys and copper and its alloys 2.Able to explain aluminum and its alloys and copper and its alloys 3.Able to describe the microstructure of aluminum alloys and copper alloys 	Criteria: Participation and assignments Grade criteria: Special: 90 to 100; Very good: 76 to 89; Average: 56 to 75; Below average: 0 to 55 Forms of Assessment : Participatory Activities, Portfolio Assessment, Tests	Offline 2x 50	Men leas alur its a Men leas and Giv of ti alur alur alur alur alur alur alur alur	minum bys and bper alloys industry ferences: Dieter, GE,	2%
					Sci Eng Fou Mc- Cor	ience and gineering. urth Edition. -Graw-Hill mpanies,	
					Mai Men leas alun its a Men leas and Exe use alun alun alun cop for i Ref [6] J <i>Men</i> <i>Men</i>	tterial: ention at st 3 minum and alloys ention at st 3 copper d its alloys emplify the e of minum oys and opper alloys industry ferences: Dieter, GE, Dieter, GE, Dietallurgy, e-Graw Hill,	
					Mei leas alur its a Mei leas and Giv of tl	terial: ention at st 3 minum and alloys ention at st 3 copper d its alloys ve examples the use of minum	
					allo cop for i indu Ref [2] : W. Sciu ITS	oys and oper alloys	

5	Describe	1 Ahle to	Criteria:	Offline	Material	2%
5	Describe aluminum and its alloys and copper and its alloys	 Able to describe aluminum and its alloys and copper and its alloys Able to explain aluminum and its alloys and copper and its alloys Able to describe the microstructure of aluminum alloys and copper alloys 	Criteria: Participation and assignments Grade criteria: Special: 90 to 100; Very good: 76 to 89; Average: 56 to 75; Below average: 0 to 55 Forms of Assessment : Participatory Activities, Portfolio Assessment, Tests	Offline 2 x 50	Material: Mention a least 3 aluminum its alloys Mention a least 3 co and its all Give exar of the use aluminum alloys and copper all for industi Referenc [4] Smith, William F. Hashemi, Javad. 20 Foundatic Materials Science a Engineerit Fourth Eq Mc-Graw- Companie Inc: NewMaterial: Mention a least 3 co aluminum alloys and copper all for industi Reference [4] Smith, William F. Hashemi, Javad. 20 Foundatic Materials Science a Engineerit Fourth Eq Mc-Graw- Companie Inc: NewMaterial: Mention a least 3 aluminum alloys and copper all for industi Reference [6] Dieter, Mechanic Metallurgy Mc-Graw 1988Material: Mention a least 3 aluminum alloys and copper all for industi Reference [6] Dieter, Mechanic Metallurgy Mc-Graw 1988Material: Mention a least 3 aluminum its alloys Mechanic Metallurgy Mc-Graw 1988	at an and at poper oys mples e of d loys ry ees:
					alloys and copper all for the industrial Referenc [2] Suhern W. 1999. Science I. ITS Publis Surabaya	d loys world res: man, Metal 1. sher:
6	Describe magnesium and its alloys, nickel and its alloys	 a. Able to describe magnesium and its alloys, nickel and its alloys b. Explains magnesium and its alloys, nickel and its alloys c. Describe the microstructure of magnesium alloys, nickel alloys 	Criteria: According to the Rubric. Technique: Participation, Written test, (Quiz-3). Score criteria: Special: 90 to 100; Very good: 76 to 89; Average: 56 to 75; Below average: 0 to 55 Forms of Assessment : Participatory Activities, Portfolio Assessment, Tests	Lectures, discussions, exercises and questions and answers 2X 50	Material: Mention a least 3 examples magnesiu alloys Me at least 3 examples nickel allo Give exar of the use magnesiu and nicke alloys Referenc [1] Suhern W. 1999. Science 1 Publisher. Surabaya	2% at s of imm intion s of bys mples e of imm im s es: man, Metal L. ITS :

7	Describe magnesium and its alloys, nickel and its alloys	 a. Able to describe magnesium and its alloys, nickel and its alloys b. Explains magnesium and its alloys, nickel and its alloys c. Describe the microstructure of magnesium alloys, nickel alloys 	Criteria: According to the Rubric. Technique: Participation, Written test, (Quiz-3). Score criteria: Special: 90 to 100; Very good: 76 to 89; Average: 56 to 75; Below average: 0 to 55 Forms of Assessment : Participatory Activities, Portfolio Assessment, Tests	Lectures, discussions, exercises and questions and answers 2X 50	Material: Mention at least 3 examples of magnesium alloys Mention at least 3 examples of nickel alloys Give examples of the use of magnesium and nickel alloys References: [1] Suherman, W. 1999. Metal Science 1. ITS Publisher: Surabaya	3%
8	Sub Exam	UTS	Criteria: according to the rubric Form of Assessment : Participatory Activities	Doing the 2 x 50 test	Material: UTS References: [1] Suherman, W. 1999. Metal Science 1. ITS Publisher: SurabayaMaterial: UTS References: [2] Suherman, W. 1999. Metal Science 11. ITS Publisher: SurabayaMaterial: UTS References: [3] Callister, William D. 2003. Materials Science and Engineering An Introduction. Sixth Edition. John Wiley & Sons, Inc: USAMaterial: UTS References: [5] Smith, William F. 1993. Structure and Properties of Engineering Alloy. Second Edition. Material: UTS References: [6] Dieter, GE, Mechanical Metallurgy, Mc-Graw-Hill 1988Material: UTS References: [6] Dieter, GE, Mechanical Metallurgy, Mc-Graw Hill, 1988Material: UTS References: [7] Van Vlack, Djaprie, S., Materials Science and Technology, Edition IV, Erlangga, Jakarta	20%

9	Describe titanium and its alloys	 a. Able to describe titanium and b. Able to explain titanium and its alloys c. Able to describe the microstructure of titanium alloys 	Criteria: Technique: Participation, Written test, (Quiz-4). Score criteria: Special: 90 to 100; Very good: 76 to 89; Average: 56 to 75; Below average: 0 to 55 Form of Assessment : Participatory Activities	Offline 2 x 50	Material: Mentions 3 examples of titanium alloys. Examples of the use of titanium alloys in the industrial world. References: [1] Suherman, W. 1999. Metal Science 1. ITS Publisher: Surabaya	2%
10	Calculating the mechanical strength of ceramics	 Able to calculate the mechanical strength of ceramics Able to explain the results of mechanical strength calculations for ceramics C Able to differentiate test results after carrying out theoretical calculations with the results of trial data in a study (article) 	Criteria: According to the Rubric. Form of Assessment Participatory Activities	Lectures, discussions, questions and answers and 2 X 50 exercises	Material: Calculating the hardness value of ceramic materials Calculating the impact strength value of ceramics References: [1] Suherman, W. 1999. Metal Science 1. ITS Publisher: Surabaya	5%
11	Perform mechanical strength calculations on polymers and composites	 a. Able to calculate mechanical strength in polymer ceramics and composites b. Able to explain the results of mechanical strength calculations for polymers and composites c.c. Able to differentiate test results after carrying out theoretical calculations with the results of trial data in a study 	Criteria: According to the Rubric. Score criteria: Special: 90 to 100; Very good: 76 to 89; Average: 56 to 75; Below average: 0 to 55 Form of Assessment : Participatory Activities	Lectures, discussions, questions and answers, and 2 X 50 exercises	Material: Calculating tensile strength values in polymers Calculating tensile strength values in composites References: [1] Suherman, W. 1999. Metal Science 1. ITS Publisher: Surabaya	5%

12	Perform mechanical strength calculations on polymers and composites	 a. Able to calculate mechanical strength in polymer ceramics and composites b. Able to explain the results of mechanical strength calculations for polymers and composites c.c Able to differentiate test results after carrying out theoretical calculations with the results of trial data in a study 	Criteria: According to the Rubric. Score criteria: Special: 90 to 100; Very good: 76 to 89; Average: 56 to 75; Below average: 0 to 55 Form of Assessment : Participatory Activities	Lectures, discussions, questions and answers, and 2 X 50 exercises	Material: Calculating tensile strength values in polymers Calculating tensile strength values in composites References: [1] Suherman, W. 1999. Metal Science 1. ITS Publisher: Surabaya	5%
13	Practical heat treatment on steel Laboratory practical heat treatment on metal	 Able to classify heat treatments on metals Able to describe the heating scheme for each treatment Able to explain the stages of metal formation Carrying out hardness testing on steel materials after the heat treatment process on non-ferrous metals Able to present practical results and analyze practical results 	Criteria: According to the Rubric. Technique: Participation, Written test, (Quiz-3). Score criteria: Special: 90 to 100; Very good: 76 to 89; Average: 56 to 75; Below average: 0 to 55 Forms of Assessment : Participatory Activities, Portfolio Assessment, Practice / Performance	Lectures, discussions, questions and answers, and 2 X 50 exercises	Material: Practical Literature: [1] Suherman, W. 1999. Metal Science 1. ITS Publisher: Surabaya Material: Practical Library: [8] JF Shackelford, Introduction to materials Science for engineers, 3rd Ed, Macmillan, 1992 Material: Practical References: [6] Dieter, GE, Mechanical Metallurgy, Mc-Graw Hill, 1988	5%

14	Practical heat treatment on steel Laboratory practical heat treatment on metal	 Able to classify heat treatments on metals Able to describe the heating scheme for each treatment Able to explain the stages of metal formation Carrying out hardness testing on steel materials after the heat treatment process on non-ferrous metals Able to present practical results and analyze practical results 	Criteria: According to the Rubric. Technique: Participation, Written test, (Quiz-3). Score criteria: Special: 90 to 100; Very good: 76 to 89; Average: 56 to 75; Below average: 0 to 55 Forms of Assessment : Participatory Activities, Portfolio Assessment, Practice / Performance	Lectures, discussions, questions and answers, and 2 X 50 exercises	Material: Practical Literature: [1] Suherman, W. 1999. Metal Science 1. ITS Publisher: Surabaya Material: Practical Library: [8] JF Shackelford, Introduction to materials Science for engineers, 3rd Ed, Macmillan, 1992 Material: Practical References: [6] Dieter, GE, Mechanical Metallurgy, Mc-Graw Hill, 1988	7%
15	Practical heat treatment on steel Laboratory practical heat treatment on metal	 Able to classify heat treatments on metals Able to describe the heating scheme for each treatment Able to explain the stages of metal formation Carrying out hardness testing on steel materials after the heat treatment process on non-ferrous metals Able to present practical results and analyze practical results 	Criteria: According to the Rubric. Technique: Participation, Written test, (Quiz-3). Score criteria: Special: 90 to 100; Very good: 76 to 89; Average: 56 to 75; Below average: 0 to 55 Forms of Assessment : Participatory Activities, Portfolio Assessment, Practice / Performance	Lectures, discussions, questions and answers, and 2 X 50 exercises	Material: Practical Literature: [1] Suherman, W. 1999. Metal Science 1. ITS Publisher: Surabaya Material: Practical Library: [8] JF Shackelford, Introduction to materials Science for engineers, 3rd Ed, Macmillan, 1992 Material: Practical References: [6] Dieter, GE, Mechanical Metallurgy, Mc-Graw Hill, 1988	7%

16	UAS	Criteria: Score criteria: Special: 90 to 100; Very good: 76 to 89; Average: 56 to 75; Below average: 0 to 55 Form of Assessment : Participatory Activities, Tests	UAS 2 X 50	Material: UAS Reference: [1] Suherman, W. 1999. Metal Science 1. ITS Publisher: SurabayaMaterial: UAS References: [3] Callister, William D. 2003. Materials Science and Engineering An Introduction. Sixth Edition. John Wiley & Sons, Inc: USAMaterial: UAS References: [5] Smith, William F. 1993. Structure and Properties of Engineering Alloy. Second Edition. Mc- Graw-Hill Companies, Inc: New YorkMaterial: UAS References: [6] Dieter, GE, 	30%

Evaluation Percentage Recap: Case Study

No	Evaluation	Percentage
1.	Participatory Activities	63.34%
2.	Portfolio Assessment	9.34%
3.	Practice / Performance	6.33%
4.	Test	20.01%
		99.02%

Notes

- Learning Outcomes of Study Program Graduates (PLO Study Program) are the abilities possessed by each Study
 Program graduate which are the internalization of attitudes, mastery of knowledge and skills according to the level of their
 study program obtained through the learning process.
- The PLO imposed on courses are several learning outcomes of study program graduates (CPL-Study Program) which are used for the formation/development of a course consisting of aspects of attitude, general skills, special skills and knowledge.
- 3. **Program Objectives (PO)** are abilities that are specifically described from the PLO assigned to a course, and are specific to the study material or learning materials for that course.
- 4. **Subject Sub-PO (Sub-PO)** is a capability that is specifically described from the PO that can be measured or observed and is the final ability that is planned at each learning stage, and is specific to the learning material of the course.
- 5. **Indicators for assessing** ability in the process and student learning outcomes are specific and measurable statements that identify the ability or performance of student learning outcomes accompanied by evidence.
- 6. Assessment Criteria are benchmarks used as a measure or measure of learning achievement in assessments based on predetermined indicators. Assessment criteria are guidelines for assessors so that assessments are consistent and unbiased. Criteria can be quantitative or qualitative.
- 7. Forms of assessment: test and non-test.

- 8. Forms of learning: Lecture, Response, Tutorial, Seminar or equivalent, Practicum, Studio Practice, Workshop Practice, Field Practice, Research, Community Service and/or other equivalent, Fracticum, Studio Fractice, Workshop Fractice, Field Practice, Research, Community Service and/or other equivalent forms of learning. Learning Methods: Small Group Discussion, Role-Play & Simulation, Discovery Learning, Self-Directed Learning, Cooperative Learning, Collaborative Learning, Contextual Learning, Project Based Learning, and other equivalent methods.
- 9.
- 10. Learning materials are details or descriptions of study materials which can be presented in the form of several main points and sub-topics.
- The assessment weight is the percentage of assessment of each sub-PO achievement whose size is proportional to the level of difficulty of achieving that sub-PO, and the total is 100%.
 TM=Face to face, PT=Structured assignments, BM=Independent study.