

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

## Universitas Negeri Surabaya Faculty of Engineering, Mechanical Engineering Undergraduate Study Program

Document Code

| UNES                                                                                                                                                                                                                                                                                                                                                                                                                   | A A  | Mechanical Engineering Undergraduate Study Program     |                                           |                                     |                                   |                                         |         |                              |                                |                                    |                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------------------------------------------------|-------------------------------------------|-------------------------------------|-----------------------------------|-----------------------------------------|---------|------------------------------|--------------------------------|------------------------------------|-----------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                        |      |                                                        | SEN                                       | MESTER                              | R LEAF                            | RNING I                                 | PLA     | N                            |                                |                                    |                             |
| Courses                                                                                                                                                                                                                                                                                                                                                                                                                |      |                                                        | CODE                                      |                                     | Course Fan                        | nily                                    | Cred    | it We                        | ght                            | SEMESTER                           | Compilation<br>Date         |
| Fluid Me                                                                                                                                                                                                                                                                                                                                                                                                               | chan | ics II                                                 | 212010304                                 | 2                                   |                                   |                                         | T=3     | P=0                          | ECTS=4.77                      | 5                                  | July 18, 2024               |
| AUTHORIZATION                                                                                                                                                                                                                                                                                                                                                                                                          |      | SP Develo                                              | P Developer                               |                                     | Course Cluster Coordinator        |                                         |         | Study Program<br>Coordinator |                                |                                    |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                        |      |                                                        |                                           |                                     |                                   |                                         |         |                              |                                |                                    | u Adiwibowo,<br>, M.T.      |
| Learning<br>model                                                                                                                                                                                                                                                                                                                                                                                                      | J    | Case Studies                                           |                                           |                                     |                                   |                                         |         |                              |                                |                                    |                             |
| Program                                                                                                                                                                                                                                                                                                                                                                                                                |      | PLO study prog                                         | gram that is cha                          | rged to the c                       | ourse                             |                                         |         |                              |                                |                                    |                             |
| Learning<br>Outcom                                                                                                                                                                                                                                                                                                                                                                                                     |      | Program Object                                         | tives (PO)                                |                                     |                                   |                                         |         |                              |                                |                                    |                             |
| (PLO)                                                                                                                                                                                                                                                                                                                                                                                                                  |      | PLO-PO Matrix                                          |                                           |                                     |                                   |                                         |         |                              |                                |                                    |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                        |      | P.O                                                    |                                           |                                     |                                   |                                         |         |                              |                                |                                    |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                        |      | PO Matrix at the end of each learning stage (Sub-PO)   |                                           |                                     |                                   |                                         |         |                              |                                |                                    |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                        |      |                                                        |                                           |                                     |                                   |                                         |         |                              |                                |                                    |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                        |      |                                                        | P.O                                       | P.O                                 |                                   |                                         | Week    |                              |                                |                                    |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                        |      |                                                        | 1                                         | 2 3 4                               | 5 6                               | 7 8                                     | 9 1     | LO                           | 11   12                        | 13 14                              | 15 16                       |
| Short<br>Course<br>Descript                                                                                                                                                                                                                                                                                                                                                                                            | tion | Understanding of fluid flow, boundar                   | dimensional analy<br>dry layer theory, co | vsis, general ch<br>nservation prin | naracteristics<br>ciples in fluid | of external flo<br>flow, and bas        | ow, dra | ig and<br>ory req            | lift phenome<br>garding veloci | na on an obje<br>ty triangle fluid | at in relation to machines. |
| Referen                                                                                                                                                                                                                                                                                                                                                                                                                | ces  | Main :                                                 |                                           |                                     |                                   |                                         |         |                              |                                |                                    |                             |
| <ol> <li>[1]. Robert W.Fox, Alan T. McDonald, Philip J. Pritchard. 2004. Introduction to Fluid Mechanics, 6th Edition. USA: Wiley &amp; Sons, Inc.</li> <li>[2]. Y. Nakayama &amp; R.F. Boucher. 2002. Introduction to Fluid Mechanics, Revised. Oxford: Butterworth-Heinemann.</li> <li>[3]. Herbert Oertel. 2001. Introduction to Fluid Mechanics: Fundamentals &amp; Applications Braunschweig-Wiesbaden</li> </ol> |      |                                                        |                                           |                                     |                                   |                                         | emann.  |                              |                                |                                    |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                        |      | Supporters:                                            |                                           |                                     |                                   |                                         |         |                              |                                |                                    |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                        |      |                                                        |                                           |                                     |                                   |                                         |         |                              |                                |                                    |                             |
| Support<br>lecturer                                                                                                                                                                                                                                                                                                                                                                                                    |      | Prof. Dr. Ir. I Way<br>DWI HERU SUT<br>Dr. A. Grummy W |                                           | м.т.                                |                                   |                                         |         |                              |                                |                                    |                             |
| Week-                                                                                                                                                                                                                                                                                                                                                                                                                  | eac  | al abilities of<br>h learning<br>ge<br>b-PO)           |                                           | Evaluation                          |                                   | Student Assignments, r [Estimated time] |         |                              | Learning materials [           | Assessment<br>Weight (%)           |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                        | (Su  | D-1-O)                                                 | Indicator                                 | Criteria                            | & Form                            | Offline (                               | 0       | nline                        | ( online )                     | 1                                  |                             |

| 1 | Students can find out about the material that will be studied in the Fluid Mechanics 2 course, and lecture contracts such as: rules and assessment | Can understand the material that will be studied in the Fluid Mechanics 2 course, and lecture contracts such as: rules and assessment | Criteria:  1.Task: 2.a. Steps for working on the questions 3.b. Completeness of work: Drawings/schemes, basic formulas, assumptions, inclusion of units 4.c. The final result 5.USS and USf: 6.Compliance with the answer key, including: work steps, completeness of work, and final results | Lectures<br>and<br>questions<br>and<br>answers<br>3 X 50                                                 |  | 0% |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--|----|
| 2 | Students can explain ideal fluid analysis: Euler's equation, Bernoulli's equation, energy grade line (EGL) and hydraulic grade line                | Can explain ideal fluid analysis: Euler's equation, Bernoulli's equation, energy grade line (EGL) and hydraulic grade line            | Criteria: 1.Task: 2.a. Steps for working on the questions 3.b. Completeness of work: Drawings/schemes, basic formulas, assumptions, inclusion of units 4.c. The final result                                                                                                                  | Lectures,<br>questions<br>and<br>answers,<br>discussions<br>and<br>practice<br>questions<br>on<br>3 X 50 |  | 0% |
| 3 | Students can explain ideal fluid analysis: Euler's equation, Bernoulli's equation, energy grade line (EGL) and hydraulic grade line                | Can explain ideal fluid analysis: Equation, Bernoulli's equation, energy grade line (EGL) and hydraulic grade line                    | Criteria: 1.Task: 2.a. Steps for working on the questions 3.b. Completeness of work: Drawings/schemes, basic formulas, assumptions, inclusion of units 4.c. The final result                                                                                                                  | Lectures,<br>questions<br>and<br>answers,<br>discussions<br>and<br>practice<br>questions<br>on<br>3 X 50 |  | 0% |
| 4 | Students can explain dimensional analysis (pi-Buckingham theorem), dimensionless parameters, and similarity                                        | Can explain<br>dimensional<br>analysis (pi-<br>Buckingham<br>theorem),<br>dimensionless<br>parameters,<br>and similarity              | Criteria: 1.Task: 2.a. Steps for working on the questions 3.b. Completeness of work: Drawings/schemes, basic formulas, assumptions, inclusion of units 4.c. The final result                                                                                                                  | Lectures,<br>questions<br>and<br>answers,<br>discussions<br>and<br>practice<br>questions<br>on<br>3 X 50 |  | 0% |
| 5 | Students can explain dimensional analysis (pi-Buckingham theorem), dimensionless parameters, and similarity                                        | Can explain<br>dimensional<br>analysis (pi-<br>Buckingham<br>theorem),<br>dimensionless<br>parameters,<br>and similarity              | Criteria: 1.Task: 2.a. Steps for working on the questions 3.b. Completeness of work: Drawings/schemes, basic formulas, assumptions, inclusion of units 4.c. The final result                                                                                                                  | Lectures,<br>questions<br>and<br>answers,<br>discussions<br>and<br>practice<br>questions<br>on<br>3 X 50 |  | 0% |
| 6 | Students can explain dimensional analysis (pi-Buckingham theorem), dimensionless parameters, and similarity                                        | Can explain dimensional analysis (pi-Buckingham theorem), dimensionless parameters, and similarity                                    | Criteria: 1.Task: 2.a. Steps for working on the questions 3.b. Completeness of work: Drawings/schemes, basic formulas, assumptions, inclusion of units 4.c. The final result                                                                                                                  | Lectures,<br>questions<br>and<br>answers,<br>discussions<br>and<br>practice<br>questions<br>on<br>3 X 50 |  | 0% |

|    |                                                                                                                                                                                |                                                                                                                                                                          |                                                                                                                                                                              | T                                                                                                        | 1 |    |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---|----|
| 7  | Students can explain viscous fluid flow in channels: laminar flow, turbulent flow, fully developed flow, Moody diagram, minor losses & major losses                            | Can explain viscous fluid flow in channels: laminar flow, turbulent flow, fully developed flow, Moody diagram, minor losses & major losses                               | Criteria: 1.Task: 2.a. Steps for working on the questions 3.b. Completeness of work: Drawings/schemes, basic formulas, assumptions, inclusion of units 4.c. The final result | Lectures,<br>questions<br>and<br>answers,<br>discussions<br>and<br>practice<br>questions<br>on<br>3 X 50 |   | 0% |
| 8  | Students can work<br>on USS questions                                                                                                                                          | Can do USS<br>questions                                                                                                                                                  | Criteria: 1.Writing test: 2.Compliance with the answer key, including: work steps, completeness of work, and final results                                                   | Open book<br>2 X 50                                                                                      |   | 0% |
| 9  | Students can<br>explain viscous<br>fluid flow in<br>channels: laminar<br>flow, turbulent flow,<br>fully developed<br>flow, Moody<br>diagram, minor<br>losses & major<br>losses | Can explain<br>viscous fluid<br>flow in<br>channels:<br>laminar flow,<br>turbulent flow,<br>fully developed<br>flow, Moody<br>diagram, minor<br>losses & major<br>losses | Criteria: 1.Task: 2.a. Steps for working on the questions 3.b. Completeness of work: Drawings/schemes, basic formulas, assumptions, inclusion of units 4.c. The final result | Lectures,<br>questions<br>and<br>answers,<br>discussions<br>and<br>practice<br>questions<br>on<br>3 X 50 |   | 0% |
| 10 | Students can<br>explain viscous<br>fluid flow in<br>channels: laminar<br>flow, turbulent flow,<br>fully developed<br>flow, Moody<br>diagram, minor<br>losses & major<br>losses | Can explain<br>viscous fluid<br>flow in<br>channels:<br>laminar flow,<br>turbulent flow,<br>fully developed<br>flow, Moody<br>diagram, minor<br>losses & major<br>losses | Criteria: 1.Task: 2.a. Steps for working on the questions 3.b. Completeness of work: Drawings/schemes, basic formulas, assumptions, inclusion of units 4.c. The final result | Lectures,<br>questions<br>and<br>answers,<br>discussions<br>and<br>practice<br>questions<br>on<br>3 X 50 |   | 0% |
| 11 | Students can<br>explain external<br>flow including<br>boundary layer<br>characteristics, lift<br>and drag                                                                      | Can explain<br>external flow<br>including<br>boundary layer<br>characteristics,<br>lift and drag                                                                         | Criteria: 1.Task: 2.a. Steps for working on the questions 3.b. Completeness of work: Drawings/schemes, basic formulas, assumptions, inclusion of units 4.c. The final result | Lectures,<br>questions<br>and<br>answers,<br>discussions<br>and<br>practice<br>questions<br>on<br>3 X 50 |   | 0% |
| 12 | Students can<br>explain external<br>flow including<br>boundary layer<br>characteristics, lift<br>and drag                                                                      | Can explain<br>external flow<br>including<br>boundary layer<br>characteristics,<br>lift and drag                                                                         | Criteria: 1.Task: 2.a. Steps for working on the questions 3.b. Completeness of work: Drawings/schemes, basic formulas, assumptions, inclusion of units 4.c. The final result | Lectures,<br>questions<br>and<br>answers,<br>discussions<br>and<br>practice<br>questions<br>on<br>3 X 50 |   | 0% |
| 13 | Students can<br>explain external<br>flow including<br>boundary layer<br>characteristics, lift<br>and drag                                                                      | Can explain<br>external flow<br>including<br>boundary layer<br>characteristics,<br>lift and drag                                                                         | Criteria: 1.Task: 2.a. Steps for working on the questions 3.b. Completeness of work: Drawings/schemes, basic formulas, assumptions, inclusion of units 4.c. The final result | Lectures,<br>questions<br>and<br>answers,<br>discussions<br>and<br>practice<br>questions<br>on<br>3 X 50 |   | 0% |

| 14 | Students can<br>explain about<br>compressible flow<br>including ideal<br>gases, Mach<br>number and speed<br>of sound, isentropic<br>and non-isentropic<br>flow | Can explain<br>compressible<br>flow including<br>ideal gas,<br>Mach number<br>and speed of<br>sound,<br>isentropic and<br>non-isentropic<br>flow | Criteria: 1.Task: 2.a. Steps for working on the questions 3.b. Completeness of work: Drawings/schemes, basic formulas, assumptions, inclusion of units 4.c. The final result | Lectures,<br>questions<br>and<br>answers,<br>discussions<br>and<br>practice<br>questions<br>on<br>3 X 50 |  | 0% |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--|----|
| 15 | Students can explain about compressible flow including ideal gases, Mach number and speed of sound, isentropic and non-isentropic flow                         | Can explain<br>compressible<br>flow including<br>ideal gas,<br>Mach number<br>and speed of<br>sound,<br>isentropic and<br>non-isentropic<br>flow | Criteria: 1.Task: 2.a. Steps for working on the questions 3.b. Completeness of work: Drawings/schemes, basic formulas, assumptions, inclusion of units 4.c. The final result | Lectures,<br>questions<br>and<br>answers,<br>discussions<br>and<br>practice<br>questions<br>on<br>3 X 50 |  | 0% |
| 16 | Students can work on US questions                                                                                                                              | Can do US<br>questions                                                                                                                           | Criteria: 1.Subjective test: 2.Compliance with the answer key, including: work steps, completeness of work, and final results                                                | Open book<br>2 X 50                                                                                      |  | 0% |

**Evaluation Percentage Recap: Case Study** 

| NI- | E l        | D          |  |
|-----|------------|------------|--|
| INO | Evaluation | Percentage |  |
|     |            | 0%         |  |

## Notes

- Learning Outcomes of Study Program Graduates (PLO Study Program) are the abilities possessed by each Study
  Program graduate which are the internalization of attitudes, mastery of knowledge and skills according to the level of their
  study program obtained through the learning process.
- The PLO imposed on courses are several learning outcomes of study program graduates (CPL-Study Program) which
  are used for the formation/development of a course consisting of aspects of attitude, general skills, special skills and
  knowledge.
- 3. **Program Objectives (PO)** are abilities that are specifically described from the PLO assigned to a course, and are specific to the study material or learning materials for that course.
- 4. **Subject Sub-PO (Sub-PO)** is a capability that is specifically described from the PO that can be measured or observed and is the final ability that is planned at each learning stage, and is specific to the learning material of the course.
- 5. **Indicators for assessing** ability in the process and student learning outcomes are specific and measurable statements that identify the ability or performance of student learning outcomes accompanied by evidence.
- Assessment Criteria are benchmarks used as a measure or measure of learning achievement in assessments based
  on predetermined indicators. Assessment criteria are guidelines for assessors so that assessments are consistent and
  unbiased. Criteria can be quantitative or qualitative.
- 7. Forms of assessment: test and non-test.
- 8. Forms of learning: Lecture, Response, Tutorial, Seminar or equivalent, Practicum, Studio Practice, Workshop Practice, Field Practice, Research, Community Service and/or other equivalent forms of learning.
- Learning Methods: Small Group Discussion, Role-Play & Simulation, Discovery Learning, Self-Directed Learning, Cooperative Learning, Collaborative Learning, Contextual Learning, Project Based Learning, and other equivalent methods
- 10. Learning materials are details or descriptions of study materials which can be presented in the form of several main points and sub-topics.
- 11. The assessment weight is the percentage of assessment of each sub-PO achievement whose size is proportional to the level of difficulty of achieving that sub-PO, and the total is 100%.
- 12. TM=Face to face, PT=Structured assignments, BM=Independent study.