

Universitas Negeri Surabaya Faculty of Engineering, Mechanical Engineering Undergraduate Study Program

Document Code

Courses				CODE		Course Fa	Course Family		Credit Weight		SEM	ESTER	Compilation Date		
Fluid Mechanics 2				212010212	7				T=2	P=0	ECTS=	3.18		4	July 16, 2024
AUTHORIZATION				SP Developer				Course Cluster Coordinator			ator	Study Program Coordinator			
												Ir. Priyo Heru Adiwibowo, S.T., M.T.			
Learning model) C	Case Studies													
Program Learning		PLO study program that is charged to the course													
Outcom		rogram Objec	ctives	(PO)											
(PLO)	Ρ	LO-PO Matrix	ζ.												
				P.0											
	Р	O Matrix at th	ie end	of each le	arning stag	je (Sub-PO)									
			Р	P.O Week											
				1 2 3 4 5 6 7 8 9 10 11 12 13 14						14	15 16				
Short Course Descript	flu	Inderstanding of uid flow, bounda	f dimer ary laye	nsional analy er theory, co	vsis, general nservation p	characteristic: rinciples in flui	s of exte d flow, a	ernal flo and bas	ow, dra sic the	ag and eory re	d lift phe garding	nome veloci	na on ity triar	an obje ngle fluid	ct in relation to 1 machines.
Referen	ces N	lain :													
		 [1]. Robert W.Fox, Alan T. McDonald, Philip J. Pritchard. 2004. Introduction to Fluid Mechanics, 6th Edition. USA: John Wiley & Sons, Inc. [2]. Y. Nakayama & R.F. Boucher. 2002. Introduction to Fluid Mechanics, Revised. Oxford: Butterworth-Heinemann. [3]. Herbert Oertel. 2001. Introduction to Fluid Mechanics: Fundamentals & Applications Braunschweig-Wiesbaden 													
Supporters:															
Supporting lecturer Prof. Dr. Ir. I Wayan S Dr. A. Grummy Waila Ir. Priyo Heru Adiwibo			Vailand	luw, M.Pd., I	М.Т.										
Week-	each stage	Final abilities of each learning stage (Sub-PO)		E				Help Learning, Learning methods, Student Assignments, [Estimated time]				Learning materials [References	Assessment Weight (%)		
((Sub-			dicator	Criteria	a & Form		ine(ine)	0	online	(online)	Reie]	
(1)	1	(2)		(3)		(4)	(!	5)			(6)			(7)	(8)

1	Students can find out the material that will be studied in the Fluid Mechanics 2 course, and lecture contracts such as: rules and regulations, and assessments	Can understand the material that will be studied in the Fluid Mechanics 2 course, and lecture contracts such as: rules and assessment	Criteria: 1.Task: 2.a. Steps for working on the questions 3.b. Completeness of work: Drawings/schemes, basic formulas, assumptions, inclusion of units 4.c. The final result 5.USS and USf: 6.Compliance with the answer key, including: work steps, completeness of work, and final results	Lectures and questions and answers 3 X 50		0%
2	Students can explain ideal fluid analysis: Euler's equation, Bernoulli's equation, energy grade line (EGL) and hydraulic grade line	Can explain ideal fluid analysis: Euler's equation, Bernoulli's equation, energy grade line (EGL) and hydraulic grade line	Criteria: 1.Task: 2.a. Steps for working on the questions 3.b. Completeness of work: Drawings/schemes, basic formulas, assumptions, inclusion of units 4.c. The final result	Lectures, questions and answers, discussions and practice questions on 3 X 50		0%
3	Students can explain ideal fluid analysis: Euler's equation, Bernoulli's equation, energy grade line (EGL) and hydraulic grade line	Can explain ideal fluid analysis: Euler's equation, Bernoulli's equation, energy grade line (EGL) and hydraulic grade line	Criteria: 1.Task: 2.a. Steps for working on the questions 3.b. Completeness of work: Drawings/schemes, basic formulas, assumptions, inclusion of units 4.c. The final result	Lectures, questions and answers, discussions and practice questions on 3 X 50		0%
4	Students can explain dimensional analysis (pi- Buckingham theorem), dimensionless parameters, and similarity	Can explain dimensional analysis (pi- Buckingham theorem), dimensionless parameters, and similarity	Criteria: 1.Task: 2.a. Steps for working on the questions 3.b. Completeness of work: Drawings/schemes, basic formulas, assumptions, inclusion of units 4.c. The final result	Lectures, questions and answers, discussions and practice questions on 3 X 50		0%
5	Students can explain dimensional analysis (pi- Buckingham theorem), dimensionless parameters, and similarity	Can explain dimensional analysis (pi- Buckingham theorem), dimensionless parameters, and similarity	Criteria: 1.Task: 2.a. Steps for working on the questions 3.b. Completeness of work: Drawings/schemes, basic formulas, assumptions, inclusion of units 4.c. The final result	Lectures, questions and answers, discussions and practice questions on 3 X 50		0%
6	Students can explain dimensional analysis (pi- Buckingham theorem), dimensionless parameters, and similarity	Can explain dimensional analysis (pi- Buckingham theorem), dimensionless parameters, and similarity	Criteria: 1.Task: 2.a. Steps for working on the questions 3.b. Completeness of work: Drawings/schemes, basic formulas, assumptions, inclusion of units 4.c. The final result	Lectures, questions and answers, discussions and practice questions on 3 X 50		0%

7	Students can explain viscous fluid flow in channels: laminar flow, turbulent flow, fully developed flow, Moody diagram, minor losses & major losses	Can explain viscous fluid flow in channels: laminar flow, turbulent flow, fully developed flow, Moody diagram, minor losses & major losses	Criteria: 1.Task: 2.a. Steps for working on the questions 3.b. Completeness of work: Drawings/schemes, basic formulas, assumptions, inclusion of units 4.c. The final result	Lectures, questions and answers, discussions and practice questions on 3 X 50		0%
8	Students can work on USS questions	Can do USS questions	Criteria: 1.Writing test: 2.Compliance with the answer key, including: work steps, completeness of work, and final results	Open book 2 X 50		0%
9	Students can explain viscous fluid flow in channels: laminar flow, turbulent flow, fully developed flow, Moody diagram, minor losses & major losses	Can explain viscous fluid flow in channels: laminar flow, turbulent flow, fully developed flow, Moody diagram, minor losses k major	Criteria: 1.Task: 2.a. Steps for working on the questions 3.b. Completeness of work: Drawings/schemes, basic formulas, assumptions, inclusion of units 4.c. The final result	Lectures, questions and answers, discussions and practice questions on 3 X 50		0%
10	Students can explain viscous fluid flow in channels: laminar flow, turbulent flow, fully developed flow, Moody diagram, minor losses & major losses	Can explain viscous fluid flow in channels: laminar flow, turbulent flow, fully developed flow, Moody diagram, minor losses & major losses	Criteria: 1.Task: 2.a. Steps for working on the questions 3.b. Completeness of work: Drawings/schemes, basic formulas, assumptions, inclusion of units 4.c. The final result	Lectures, questions and answers, discussions and practice questions on 3 X 50		0%
11	Students can explain external flow including the characteristics of the boundary layer, lift and drag	Can explain external flow including boundary layer characteristics, lift and drag	Criteria: 1.Task: 2.a. Steps for working on the questions 3.b. Completeness of work: Drawings/schemes, basic formulas, assumptions, inclusion of units 4.c. The final result	Lectures, questions and answers, discussions and practice questions on 3 X 50		0%
12	Students can explain external flow including the characteristics of the boundary layer, lift and drag	Can explain external flow including boundary layer characteristics, lift and drag	Criteria: 1.Task: 2.a. Steps for working on the questions 3.b. Completeness of work: Drawings/schemes, basic formulas, assumptions, inclusion of units 4.c. The final result	Lectures, questions and answers, discussions and practice questions on 3 X 50		0%
13	Students can explain external flow including the characteristics of the boundary layer, lift and drag	Can explain external flow including boundary layer characteristics, lift and drag	Criteria: 1.Task: 2.a. Steps for working on the questions 3.b. Completeness of work: Drawings/schemes, basic formulas, assumptions, inclusion of units 4.c. The final result	Lectures, questions and answers, discussions and practice questions on 3 X 50		0%

14	Students can explain about compressible flow including ideal gases, Mach number and speed of sound, isentropic and non-isentropic flow	Can explain compressible flow including ideal gas, Mach number and speed of sound, isentropic and non-isentropic flow	Criteria: 1.Task: 2.a. Steps for working on the questions 3.b. Completeness of work: Drawings/schemes, basic formulas, assumptions, inclusion of units 4.c. The final result	Lectures, questions and answers, discussions and practice questions on 3 X 50		0%
15	Students can explain about compressible flow including ideal gases, Mach number and speed of sound, isentropic and non-isentropic flow	Can explain compressible flow including ideal gas, Mach number and speed of sound, isentropic and non-isentropic flow	Criteria: 1.Task: 2.a. Steps for working on the questions 3.b. Completeness of work: Drawings/schemes, basic formulas, assumptions, inclusion of units 4.c. The final result	Lectures, questions and answers, discussions and practice questions on 3 X 50		0%
16	Students can work on US questions	Can do US questions	Criteria: 1.Subjective test: 2.Compliance with the answer key, including: work steps, completeness of work, and final results	Open book 2 X 50		0%

Evaluation Percentage Recap: Case Study

Notes

- Learning Outcomes of Study Program Graduates (PLO Study Program) are the abilities possessed by each Study
 Program graduate which are the internalization of attitudes, mastery of knowledge and skills according to the level of
 their study program obtained through the learning process.
- The PLO imposed on courses are several learning outcomes of study program graduates (CPL-Study Program) which are used for the formation/development of a course consisting of aspects of attitude, general skills, special skills and knowledge.
- 3. **Program Objectives (PO)** are abilities that are specifically described from the PLO assigned to a course, and are specific to the study material or learning materials for that course.
- 4. **Subject Sub-PO (Sub-PO)** is a capability that is specifically described from the PO that can be measured or observed and is the final ability that is planned at each learning stage, and is specific to the learning material of the course.
- 5. Indicators for assessing ability in the process and student learning outcomes are specific and measurable statements that identify the ability or performance of student learning outcomes accompanied by evidence.
- 6. Assessment Criteria are benchmarks used as a measure or measure of learning achievement in assessments based on predetermined indicators. Assessment criteria are guidelines for assessors so that assessments are consistent and unbiased. Criteria can be quantitative or qualitative.
- 7. Forms of assessment: test and non-test.
- 8. Forms of learning: Lecture, Response, Tutorial, Seminar or equivalent, Practicum, Studio Practice, Workshop Practice, Field Practice, Research, Community Service and/or other equivalent forms of learning.
- Learning Methods: Small Group Discussion, Role-Play & Simulation, Discovery Learning, Self-Directed Learning, Cooperative Learning, Collaborative Learning, Contextual Learning, Project Based Learning, and other equivalent methods.
- 10. Learning materials are details or descriptions of study materials which can be presented in the form of several main points and sub-topics.
- **11. The assessment weight** is the percentage of assessment of each sub-PO achievement whose size is proportional to the level of difficulty of achieving that sub-PO, and the total is 100%.
- 12. TM=Face to face, PT=Structured assignments, BM=Independent study.