

Universitas Negeri Surabaya Faculty of Engineering, Mechanical Engineering Education Undergraduate Study Program

Document Code

				SE	MES	TE	R L	EA	RN	IN	G F	۲L	٩N									
Courses		CODE Course Family Credit Weight				S	SEME	STER		Co Da	ompila	ation	1									
Materials	Scie	nce		8320302210			Com	pulso	ry		T=2	P=0	EC	TS=3.1	8		1		Ju	ly 17,	2024	4
AUTHORI	ZAT	ON		SP Develope	er		Subj	ects -	n Nati o	boauirs	e Clu	ster	Cool	dinator	S	Study	Progr	am Co	ordi	nator	•	
No Dr. Ha Nir				Novi Sukma I Dr. Theodorus Hanna Zakiyy Ningsih, S.T.,	Novi Sukma Drastiawati, S.T., M.Eng. Dr. Theodorus Wiyanto Wibowo, M.Pd Hanna Zakiyya, S.T., M.T. ; Tri Hartutu Ningsih, S.T., M.T.				; N k	lovi S 1.Eng	ukma	Dra	stiaw	ati, S.T.,		lr. W	/ahyu∣	Dwi Ku M.P	rniav d.	van, S	S.Pd.	.1
Learning model		Case Studies		·																		
Program		PLO study prog	gra	m which is charg	ged to	the co	ourse															
Learning Outcome	es	Program Objec	tiv	es (PO)																		
(PLO)		PO - 1	Ha	ave a basic underst	tanding	of mat	erials s	scienc	ce													
		PO - 2	Ab	le to analyze probl	ems rel	ated to	o mate	rials s	scienc	e in e	veryd	ay lif	e and	l in the e	engii	neerin	ng field					
		PLO-PO Matrix																				
				P.0 P0-1 P0-2																		
		PO Matrix at th	e e	nd of each learn	ing sta	ige (S	ub-PC))														
				P.0	1 2	3	4	5	6	7	8	9	eek	.0 11	-	12	13	14	15	5 1	16	
Short Course Descripti	ion	Understanding the Understanding of Understanding of materials, mecha composites and a	he f ele nica alloy	theory of materia ectron nomenclatur al properties of mat /s, as well as treatm	l forma re, atom terials, j nents: c	ition p nic and phase ligestic	process d cryst diagra on, fou	ses, c al stru ms fo ndry,	definit ucture or the f castin	ion o s, che forma ig.	f sco emica tion o	pe, I bor f ma	conc nds a terial	epts reg Ind meta s: ferrou	gard allic s m	ling r bond: etals,	nateria s, clas non-fe	l form sificatio rrous r	atior on of meta	n pro f engi .ls, po	cess neer lyme	es. ing ers,
Referenc	es	Main :																				
		 Srieati Ja Teknolog Dieter, G 	apri ji Bi eor	: 1DIImu dan Teki ahan1C .Surdia, Ta ge E. 1986. "Metali	nologi E ata. 1CF urgi Me	3ahan1 Penget kanik j	LD.Avn ahuan ilid 1".	ıer, Si Baha Edisi	idney ın Tek 3. Dit	H., 1 mik1C erjem	CIntro). ahkar	oduct n olel	ion t n Sria	o Physic ati Djapri	al N e. J	/letalli akarta	urgy1C a : Erla	ג.Vlak ע ngga	Van.	1Diln	nu di	an
	Ī	Supporters:																				
		 Suherman, Wahid, Ir. 1987. "Pengetahuan Bahan". Edisi Pertama. Surabaya : ITS. Smallman, R E and Bishop, R.J. 1999. "Modern Physical Metallurgy and Materials Engineering" 6thEdition. UK : Butterwort Heinemann. Avner, Sidney. 1974. "Introduction To Physical Metallurgy" 2nd Edition. Cuny, New York : Mc Graw-Hill. 							ťh-													
Supportin lecturer	ng	Novi Sukma Dras Hanna Zakiyya, S	stiav S.T.	wati, S.T., M.Eng. , M.T.																		
Week-	Fina eacl stag (Sub	Final abilities of each learning stage Evaluation Help Learning methods, Student Assignments, [Estimated time] Learning materials [References] Asse (Sub-PO) Indicator Criteria & Form Offline (Online (online)						Asses Weig	ssme Jht (9	ent %)												
(1)		(2)		(3)	(3) (4) (5) (6) (7)				(8)												

1	 Know the definition of technical materials and the grouping of technical materials Explain the characteristics of material properties 	 Explain the definition of engineering materials Analyze the usefulness of engineering materials Explain the definition of engineering material groupings Describes the grouping of engineering materials Explain the stages of the engineering materials process Explain the properties of materials Texplain the characteristics of material properties 	Criteria: According to the Rubric Form of Assessment : Participatory Activities	Lectures, discussions and questions answers 2 X 50	Material: Definition of engineering materials Reference: Srieati Japri : 1DMaterials Science and Technology1D.Avner, Sidney H., 1CIntroduction to Physical Metallurgy1C.Vlak Van. 1DIMaterials Science and Technology1C .Surdia, Tata. 1CKnowledge of Engineering Materials Selection of engineering materials References: Srieati Japri : 1DMaterials Science and Technology1D.Avner, Sidney H., 1CIntroduction to Physical Metallurgy1C.Vlak Van. 1DIMaterials Science and Technology1C .Surdia, Tata. 1CKnowledge of Engineering Materials1C. Science and Technology1C .Surdia, Tata. 1CKnowledge of Engineering Materials1C. Material: metal atoms and bonds References: Suherman, Wahid, Ir. 1987. "Materials Knowledge". First Edition. Surabaya: 175.	3%
2	 Know how to evaluate the properties of materials Knowledge of mechanical testing Knowledge of NDT testing 	 Explain the mechanical properties of materials Exemplify the mechanical properties of materials Analyze the mechanical properties of materials 	Criteria: According to the Rubric Form of Assessment : Participatory Activities	Lectures, discussions and questions and answers 2 X 50	Material: Basic concepts of mechanical properties of materials - Principles of mechanical testing of materials References: Suherman, Wahid, Ir. 1987. "Materials Knowledge". First Edition. Surabaya: ITS. Material: Various types of mechanical testing on materials - Tensile testing Hardness testing - Impact testing Fatigue testing - Creep testing Fatigue testing - Creep testing Reader: Srieati Japri 1D Science and Technology of Materials 1D.Avner, Sidney H., 1CIntroduction to Physical Metallurgy1C. Vlak Van. 1DIMaterials Science and Technology1C .Surdia, Tata. 1CKnowledge of Engineering Materials1C. Material: NDT Test Reference: Avner, Sidney. 1974. "Introduction To Physical Metallurgy" 2nd Edition. Cuny, New York : Mc Graw- Hill.	3%

3	 Know how to evaluate the properties of materials Knowledge of mechanical testing Knowledge of NDT testing 	 Explain the mechanical properties of materials Exemplify the mechanical properties of materials Analyze the mechanical properties of materials 	Criteria: According to the Rubric Form of Assessment : Participatory Activities	Lectures, discussions and questions and answers 2 X 50	Material: Basic concepts of mechanical properties of materials - Principles of mechanical testing of materials References: Suherman, Wahid, Ir. 1987. "Materials Knowledge". First Edition. Surabaya: ITS. Material: Various types of mechanical testing on materials - Tensile testing Hardness testing - Impact testing Fatigue testing - Creep testing Fatigue testing - Creep testing Reader: Srieati Japri : 1D Science and Technology of Materials 1D.Avner, Sidney H., 1CIntroduction to Physical Metallurgy1C. Vlak Van. 1DIMaterials Science and Technology1C .Surdia, Tata. 1CKnowledge of Engineering Materials1C. Material: NDT Test Reference: Avner, Sidney. 1974. "Introduction To Physical Metallurgy" 2nd Edition. Cuny, New York: Mc Graw- Hill.	3%
4	Understanding atomic bonds	 Explain the types of atomic bonds Describe the types of atomic bonds 	Criteria: According to the Rubric Form of Assessment : Participatory Activities	Lectures, discussions and questions and answers 4 X 50	Materials: Atoms - lonic bonds - Covalent bonds - Metallic bonds Library: Srieati Japri : 1DMaterials Science and Technology1D.Avner, Sidney H., 1CIntroduction to Physical Metallurgy1C.Vlak Van. 1DIMaterials Science and Technology1C .Surdia, Tata. 1CKnowledge of Engineering Materials1C. Material: Atoms - lonic bonds - Covalent bonds - Metallic bonds Metallic bonds References: Dieter, George E. 1986. "Mechanical Metallurgy volume 1". Edition 3. Translated by Sriati Djaprie. Jakarta : Erlangga	3%

5	Understand crystal structure	Explain the crystal structure of materials	Criteria: According to the Rubric Form of Assessment : Participatory Activities	Lectures, discussions and questions and answers 4 X 50	Material: Concept of crystal structure - Face centered cubic - Body centered cubic - Hexagonal closed packed - Unit cell - Lattice Space lattice - Crystal lattice References: Suherman, Wahid, Ir. 1987. "Materials Knowledge". First Edition. Surabaya: ITS.	3%
					Material: Concept of crystal structure - Face centered cubic - Body centered cubic - Hexagonal closed packed - Unit cell - Lattice Space lattice - Crystal lattice Reference: Dieter, George E. 1986. "Mechanical Metallurgy volume 1". Edition 3. Translated by Sriati Djaprie. Jakarta : Erlangga	
					Material: Concept of crystal structure - Face centered cubic - Body centered cubic - Hexagonal closed packed - Unit cell - Lattice Space lattice - Crystal lattice Reference: <i>Smallman, RE and</i> <i>Bishop, RJ 1999.</i> "Modern Physical Metallurgy and Materials Engineering" 6thEdition. UK : Butterworth- Heinemann.	

6	 Understanding shear fields in crystal structures Know how to determine the length of the side of a cube in the crystal plane Know how to determine the Miller index on the crystal plane 	 Explaining shear planes in crystal structures Describing shear planes Describe how to determine the length of the side of a cube in the crystal plane Explains how to determine the Miller index Describe the 	Criteria: According to the Rubric Form of Assessment : Participatory Activities	Lectures, discussions and questions and answers 2 X 50	Material: Shear planes in crystals Length of sides of cubes in crystals Miller index Drawing direction of crystal planes with miller indices Calculating crystal planes with miller indices References: Avner, Sidney. 1974. "Introduction To Physical Metallurgy" 2nd Edition. Cuny, New York : Mc Graw- Hill.	3%
		crystal plane using the Miller index			Material: Shear plane on a crystal Side length of a cube on a crystal Miller index Draw the direction of the crystal plane using the Miller index Calculating the crystal plane using the Miller index Reference: Suherman, Wahid, Ir. 1987. "Materials Knowledge". First Edition. Surabaya: ITS.	
					Material: Shear planes in crystals Length of sides of cubes in crystals Miller index Draw the direction of the crystal plane using the Miller index Calculating the crystal plane with the Miller index Reference: Dieter, George E. 1986. "Mechanical Metallurgy volume 1". Edition 3. Translated by Sriati Djaprie. Jakarta : Erlangga	

7	 Understanding shear fields in crystal structures Know how to determine the length of the side of a cube in the crystal plane Know how to determine the Miller index on the crystal plane 	 Explaining shear planes in crystal structures Describing shear planes Describe how to determine the length of the side of a cube in the crystal plane Explains how to determine the Miller index 	Criteria: According to the Rubric Form of Assessment : Participatory Activities	Lectures, discussions and questions and answers 2 X 50	Material: Shear planes in crystals Length of sides of cubes in crystals Miller index Drawing direction of crystal planes with miller indices Calculating crystal planes with miller indices References: Avner, Sidney. 1974. "Introduction To Physical Metallurgy" 2nd Edition. Cuny, New York : Mc Graw-	5%
		4.Describe the crystal plane using the Miller index			Hill. Material: Shear plane on a crystal Side length of a cube on a crystal Miller index Draw the direction of the crystal plane using the Miller index Calculating the crystal plane using the Miller index Reference: Suherman, Wahid, Ir. 1987. "Materials Knowledge". First Edition. Surabaya: ITS.	
					Material: Shear planes in crystals Length of sides of cubes in crystals Miller index Draw the direction of the crystal plane using the Miller index Calculating the crystal plane with the Miller index Reference: Dieter, George E. 1986. "Mechanical Metallurgy volume 1". Edition 3. Translated by Sriati Djaprie. Jakarta : Erlangga	

8	UTS	SUB SUMATIVE EXAMINATION	Criteria: Score criteria: Special: 90 to 100; Very good: 76 to 89; Average: 56 to 75; Below average: 0 to 55 Form of Assessment : Participatory Activities, Portfolio Assessment	Lectures, discussions and questions and answers 2 X 50	Material: UTS Library: Srieati Japri : 1DMaterials Science and Technology1D.Avner, Sidney H., 1CIntroduction to Physical Metallurgy1C.Vlak Van. 1DIMaterials Science and Technology1C .Surdia, Tata. 1CKnowledge of Engineering Materials1C. Material: UTS Bibliography: Dieter, George E. 1986. "Mechanical Metallurgy volume 1". Edition 3. Translated by Sriati Djaprie. Jakarta : Erlangga Material: UTS Reader: Suherman, Wahid, Ir. 1987. "Materials Knowledge". First Edition. Surabaya: ITS. Material: UTS Bibliography: Smallman, RE and Bishop, RJ 1999. "Modern Physical Metallurgy and Materials Engineering" 6thEdition. UK : Butterworth- Heinemann. Material: UTS Reader: Avner, Sidney. 1974. "Introduction To Physical Metallurgy" And Edition. Cuny, New York : Mc Graw- Hill.	20%
9	 2.Understand the recrystallization process 3.Understand the meaning of iron and steel 4.Understand how to refine iron 	 Explain the recrystallization process Describe the recrystallization process Explain the manufacture of iron and steel Describes the manufacture of iron and steel Analyzing iron refining Describe how iron is refining 	Form of Assessment : Participatory Activities	Lectures and Discussions 2 X 50	Material: Concept of recrystallization Recrystallization process Visualization Changes in microstructure due to the recrystallization process Iron and steel Differences between iron and steel Iron refining Visualization of iron refining Reference: Suherman, Wahid, Ir. 1987. "Materials Knowledge". First Edition. Surabaya: ITS.	1%

10	 Understand about steelmaking Understand the uses of steel 	 Describe how steel is made Analyze how steel is made Explain the uses of steel Demonstrate the use of steel Analyze the uses of steel in the industrial world 	Form of Assessment : Participatory Activities, Tests	Lectures, discussions and questions and answers 2 X 50	Material: The concept of steel making Steel making using a converter Steel making using a Siemens Martin kitchen Steel making using an electric kitchen Characteristics of steel General uses of steel Uses of steel in the industrial world Reference: Srieati Japri : JDMaterials Science and Technology1D.Avner, Sidney H., 1CIntroduction to Physical Metallurgy1C. Vlak Van. JDIMaterials Science and Technology1C .Surdia, Tata. 1CKnowledge of Engineering Materials1C. Material: Concept of steel making Steel making using a converter Steel making using a Siemens Martin kitchen Steel making using an electric kitchen Characteristics of steel Uses of steel in general Uses of steel in the industrial world Reference: Suherman, Wahid, Ir. 1987. "Materials Knowledge". First Edition. Surabaya: ITS.	5%
11	 Understanding the composition of alloys in a material Understand phase diagrams 	 Explains the composition of a material's alloy Describes the alloy composition of a material Explain phase diagrams Draw a phase diagram Analyzing phase diagrams 	Criteria: According to the Rubric Form of Assessment : Participatory Activities, Tests	Lectures, discussions and questions and answers 2 X 50	Material: Basic principles of alloy composition Pure metal concept Compound concept Basic solid solution concept Factors influencing solubility- solidity Phase diagram concept Pollymorphism Allotrophy Library: Suherman, Wahid, Ir. 1987. "Materials Knowledge". First Edition. Surabaya: ITS.	5%
12	 Understand the iron-iron carbide balance diagram Using the iron carbide diagram to determine the carbon content in a material 	 Explain the iron-iron carbide balance diagram Draw an iron- iron carbide balance diagram Analyze the iron-iron carbide balance diagram to determine the value of carbon content in a material 	Form of Assessment : Participatory Activities, Tests	Lectures, discussions and questions and answers 2 X 50	Material: Concept of phase diagram for two components that dissolve in infinite solids. Phase diagram for two components that do not dissolve in solids. Phase diagram for two components with limited solubility. Solids. Peritectid, eutectoid reactions. Hypoeutectoid, eutectoid, and hypereutectoid transformations. Reference: Suherman, Wahid, Ir . 1987. "Materials Knowledge". First Edition. Surabaya: ITS.	3%

13	 Understanding about non- ferrous metals Understand non-metallic materials 	 Explaining non-ferrous metals Analyzing non- ferrous metals Describe non- metallic materials Examples of non-metallic materials Classifying non-metallic materials 	Criteria: According to the Rubric Form of Assessment : Participatory Activities, Tests	Lectures, discussions and questions and answers 2 X 50	Material: Concept of non-ferrous metals Characteristics of non-ferrous metals Examples of non- ferrous metals Use of non-ferrous metals in industry References: Suherman, Wahid, Ir. 1987. "Materials Knowledge". First Edition. Surabaya: ITS. Material: Basic concepts of non- metallic materials Uses of non-metallic materials in general Uses of non-metallic materials in the industrial world Bibliography: Suherman, Wahid, Ir. 1987. "Materials Knowledge". First Edition. Surabaya: ITS.	2%
14	1.Understanding about non- ferrous metals 2.Understand non-metallic materials	 Explaining non-ferrous metals Analyzing non- ferrous metals Describe non- metallic materials Examples of non-metallic materials Classifying non-metallic materials 	Criteria: According to the Rubric Forms of Assessment : Participatory Activities, Practical Assessment, Practical / Performance, Tests	Lectures, discussions and questions and answers 2 X 50	Material: Concept of non-ferrous metals Characteristics of non-ferrous metals Examples of non- ferrous metals Use of non-ferrous metals References: Suherman, Wahid, Ir. 1987. "Materials Knowledge". First Edition. Surabaya: ITS. Material: Basic concepts of non- metallic materials Various types of non- metallic materials Uses of non-metallic materials in general Uses of non-metallic materials in the industrial world Bibliography: Suherman, Wahid, Ir. 1987. "Materials Knowledge". First Edition. Surabaya: ITS.	6%
15	 Understanding about non- ferrous metals Understand non-metallic materials 	 Explaining non-ferrous metals Analyzing non- ferrous metals Describe non- metallic materials Examples of non-metallic materials Classifying non-metallic materials 	Criteria: According to the Rubric Forms of Assessment : Participatory Activities, Practical Assessment, Practical / Performance, Tests	Lectures, discussions and questions and answers 2 X 50	Material: Concept of non-ferrous metals Characteristics of non-ferrous metals Examples of non- ferrous metals Use of non-ferrous metals in industry References: Suherman, Wahid, Ir. 1987. "Materials Knowledge". First Edition. Surabaya: ITS. Material: Basic concepts of non- metallic materials Various types of non- metallic materials Various types of non- metallic materials Uses of non-metallic materials in general Uses of non-metallic materials in general Uses of non-metallic materials in general Uses of non-metallic materials in general Uses of non-metallic materials in the industrial world Bibliography: Suherman, Wahid, Ir. 1987. "Materials Knowledge". First Edition. Surabaya: ITS.	5%

16	SUMATIVE EXAMINATION	SUMATIVE EXAMINATION	Criteria: According to the Rubric Form of Assessment : Participatory Activities	WRITTEN TEST 2 X 50	Material: Summative Exam Reader: Srieati Japri : 1DMaterials Science and Technology1D.Avner, Sidney H., 1CIntroduction to Physical Metallurgy1C.Vlak Van. 1DIMaterials Science and Technology1C .Surdia, Tata. 1CKnowledge of Engineering Materials1C.	30%
					Material: Summative Examination Reader: Suherman, Wahid, Ir. 1987. "Materials Knowledge". First Edition. Surabaya: ITS.	
					Material: Summative Examination Bibliography: Dieter, George E. 1986. "Mechanical Metallurgy volume 1". Edition 3. Translated by Sriati Djaprie. Jakarta : Erlangga	
					Material: Summative Examination Bibliography: Smallman, RE and Bishop, RJ 1999. "Modern Physical Metallurgy and Materials Engineering" 6thEdition. UK : Butterworth- Heinemann.	
					Material: Summative Exam Bibliography: Avner, Sidney. 1974. "Introduction To Physical Metallurgy" 2nd Edition. Cuny, New York : Mc Graw- Hill.	

Evaluation Percentage Recap: Case Study

No	Evaluation	Percentage
1.	Participatory Activities	74.25%
2.	Portfolio Assessment	10%
3.	Practical Assessment	2.75%
4.	Practice / Performance	2.75%
5.	Test	10.25%
		100%

Notes

- 1. Learning Outcomes of Study Program Graduates (PLO Study Program) are the abilities possessed by each Study Program graduate which are the internalization of attitudes, mastery of knowledge and skills according to the level of their study program obtained through the learning process.
- 2. The PLO imposed on courses are several learning outcomes of study program graduates (CPL-Study Program) which are
- used for the formation/development of a course consisting of aspects of attitude, general skills, special skills and knowledge.
 Program Objectives (PO) are abilities that are specifically described from the PLO assigned to a course, and are specific to the study material or learning materials for that course.
- 4. **Subject Sub-PO (Sub-PO)** is a capability that is specifically described from the PO that can be measured or observed and is the final ability that is planned at each learning stage, and is specific to the learning material of the course.
- 5. Indicators for assessing abilities in the process and student learning outcomes are specific and measurable statements that identify the abilities or performance of student learning outcomes accompanied by evidence.
- 6. Assessment Criteria are benchmarks used as a measure or measure of learning achievement in assessments based on predetermined indicators. Assessment criteria are guidelines for assessors so that assessments are consistent and unbiased. Criteria can be quantitative or qualitative.
- 7. Forms of assessment: test and non-test.

- 8. Forms of learning: Lecture, Response, Tutorial, Seminar or equivalent, Practicum, Studio Practice, Workshop Practice, Field
- Forms of learning: Lecture, Response, Futorial, Seminar of equivalent, Practicum, Studio Practice, Workshop Practice, Field Practice, Research, Community Service and/or other equivalent forms of learning.
 Learning Methods: Small Group Discussion, Role-Play & Simulation, Discovery Learning, Self-Directed Learning, Cooperative Learning, Collaborative Learning, Contextual Learning, Project Based Learning, and other equivalent methods.
 Learning materials are details or descriptions of study materials which can be presented in the form of several main points and who trained
- sub-topics.
- 11. The assessment weight is the percentage of assessment of each sub-PO achievement whose size is proportional to the level of difficulty of achieving that sub-PO, and the total is 100%.
- 12. TM=Face to face, PT=Structured assignments, BM=Independent study.