

(1)

(2)

Universitas Negeri Surabaya Faculty of Mathematics and Natural Sciences Bachelor of Mathematics Education Study Program

Document Code

[References]

(7)

(8)

				SE	MES	STI	ER L	.EA	RN	ING	i PL]					
Courses				CODE	E Cou		urse Family		Credit Weight			SEM	ESTER	Compilati Date	on			
Abstract	Alge	bra I		842020	03010						T=3	P=0	ECT	S=4.77		4	July 18, 20)24
AUTHOR	RIZAT	ION		SP De	velope	er				Cour	se Clu	uster	Coord	linator	Study Program Coordinator			
			-												Dr		3udi Rahaju Pd.	l,
Learning model	I	Case Studies																
Program		PLO study prog	gram th	nat is c	harge	d to	the cou	urse										
Learning Outcome (PLO)		Program Objec	tives (F	PO)														
		PLO-PO Matrix																
		P.O																
		PO Matrix at the end of each learning stage (Sub-PO)																
			P.0	.0			Week											
				1	2	3	4	56	7	8	9	10	11	12	13	14	15 16	
Short Course Descript	tion	This course exa Cayley's theorem															nism theore	∍m,
Referen	ces	Main :																
		1. [1] Gallia <i>Topics in</i> John Wile	Algebra	a 2nd E													ein, I.N. 19 <i>ra</i> . New Yo	
		Supporters:																
Support lecturer		Dr. Endah Budi R Prof. Dr. Dwi Juni Budi Priyo Prawo Dini Kinati Fardah Muhammad Jakfa	ati, M.S to, S.Pd 1, S.Pd.S	i. ., M.Si. Si., M.P	d.													
Week-	eac stag			Evaluation				Help Learning, Learning methods, Student Assignments, [Estimated time]			Learning materials [References	Assessment Weight (%)						
	(Sub-PO)		In	ndicato	r	Cri	iteria &	Form	Offl	ine (0	nline	(onli	ne)		1		

Offline (offline)

(5)

Online (online)

(6)

(4)

(3)

1	• Understand sets and their operations • Understand functions and composition of functions • Understand elementary number theory	 Determining the results of operations between two sets Determining the cross product of two known sets Showing the relationship between relations and the cross product of two sets Determining whether a mapping is an injective or surjective or bijective mapping Determining the composition of two or more functions - Identifying whether an operation Sets are commutative, associative, have 	Discussion and Questions and Answers 6 X 50		0%
2	• Understand sets and their operations • Understand functions and composition of functions • Understand elementary number theory	identity elements and have inverses Determining the results of operations between two sets • Determining the cross product of two known sets • Showing the relationship between relations and the cross product of two sets • Determining whether a mapping is an injective or surjective or bijective mapping • Determining the composition of two or more functions - Identifying whether an operation Sets are commutative, associative, have identity elements and have inverses	Discussion and Questions and Answers 6 X 50		0%
3	Understand the structure, types and characteristics of groups	 Shows a set with certain operations forming a group - Gives examples of groups - Gives examples of everyday life that form a group structure - Identifying commutative groups - Shows a subset with operations that apply to it is a subgroup Declares whether a particular subgroup is true or not 	Expository, Question and answer and discussion 9 X 50		0%
4	Understand the structure, types and characteristics of groups	• Shows a set with certain operations forming a group • Gives examples of groups • Gives examples of everyday life that form a group structure - Identifying commutative groups • Shows a subset with operations that apply to it is a subgroup Declares whether a particular subgroup is true or not	Expository, Question and answer and discussion 9 X 50		0%

5	Understand the structure, types and characteristics of groups	• Shows a set with certain operations forming a group • Gives examples of groups • Gives examples of everyday life that form a group structure - Identifying commutative groups • Shows a subset with operations that apply to it is a subgroup Declares whether a particular subgroup is true or not	Expository, Question and answer and discussion 9 X 50		0%
6	Understand the structure of cyclic groups and permutation groups with examples	 Identifying cyclic groups Determining the generator elements of a cyclic group - Identifying permutation groups 	Expository, Question and answer and discussion 6 X 50		0%
7	Understand the structure of cyclic groups and permutation groups with examples	 Identifying cyclic groups Determining the generator elements of a cyclic group - Identifying permutation groups 	Expository, Question and answer and discussion 6 X 50		0%
8					0%
9	Understand the concept of cosets and their properties	• Give examples of left/right cosets in a subgroup • Determine the index of a subgroup in a group - Prove the properties of cosets	Expository, Question and answer and discussion 6 X 50		0%
10	Understand the concept of cosets and their properties	• Give examples of left/right cosets in a subgroup • Determine the index of a subgroup in a group - Prove the properties of cosets	Expository, Question and answer and discussion 6 X 50		0%
11	understand the concept of normal subgroups and factor groups	 Determining a subgroup is a normal subgroup of a specified group Apply the normal subgroup theorem that left coset = right coset Proving that the intersection of two normal subgroups is a normal subgroup Shows the collection of all left/right cosets of a normal subgroup forming a group under a certain operation 	Expository, Question and answer and discussion 3 X 50		0%

	1			1	
12	understand the concept of normal subgroups and factor groups	 Determining a subgroup is a normal subgroup of a specified group Apply the normal subgroup theorem that left coset = right coset Proving that the intersection of two normal subgroups is a normal subgroups is a normal subgroup Shows the collection of all left/right cosets of a normal subgroup forming a group under a certain operation 	Expository, Question and answer and discussion 3 X 50		0%
13	understand the concept of normal subgroups and factor groups	 Determining a subgroup is a normal subgroup of a specified group Apply the normal subgroup theorem that left coset = right coset Proving that the intersection of two normal subgroups is a normal subgroups is a normal subgroup Shows the collection of all left/right cosets of a normal subgroup forming a group under a certain operation 	Expository, Question and answer and discussion 3 X 50		0%
14	Understand the concept of group homomorphism	 Identifying whether a mapping from group to group is a homomorphism or not Give an example of homomorphism Identifying whether a homomorphism is an isomorphism or not 	Expository, Question and answer and discussion 3 X 50		0%

15	Understand the concept of group homomorphism	 Identifying whether a mapping from group to group is a homomorphism or not Give an example of homomorphism Identifying whether a homomorphism is an isomorphism or not 	Expository, Question and answer and discussion 3 X 50		0%
16					0%

 Evaluation Percentage Recap: Case Study

 No
 Evaluation

 Percentage

 0%

Notes

- Learning Outcomes of Study Program Graduates (PLO Study Program) are the abilities possessed by each Study Program graduate which are the internalization of attitudes, mastery of knowledge and skills according to the level of their study program obtained through the learning process.
- The PLO imposed on courses are several learning outcomes of study program graduates (CPL-Study Program) which are used for the formation/development of a course consisting of aspects of attitude, general skills, special skills and knowledge.
- 3. **Program Objectives (PO)** are abilities that are specifically described from the PLO assigned to a course, and are specific to the study material or learning materials for that course.
- 4. Subject Sub-PO (Sub-PO) is a capability that is specifically described from the PO that can be measured or observed and is the final ability that is planned at each learning stage, and is specific to the learning material of the course.
- 5. Indicators for assessing ability in the process and student learning outcomes are specific and measurable statements that identify the ability or performance of student learning outcomes accompanied by evidence.
- 6. Assessment Criteria are benchmarks used as a measure or measure of learning achievement in assessments based on predetermined indicators. Assessment criteria are guidelines for assessors so that assessments are consistent and unbiased. Criteria can be quantitative or qualitative.
- 7. Forms of assessment: test and non-test.
- 8. Forms of learning: Lecture, Response, Tutorial, Seminar or equivalent, Practicum, Studio Practice, Workshop Practice, Field Practice, Research, Community Service and/or other equivalent forms of learning.
- Learning Methods: Small Group Discussion, Role-Play & Simulation, Discovery Learning, Self-Directed Learning, Cooperative Learning, Collaborative Learning, Contextual Learning, Project Based Learning, and other equivalent methods.
- 10. Learning materials are details or descriptions of study materials which can be presented in the form of several main points and sub-topics.
- 11. The assessment weight is the percentage of assessment of each sub-PO achievement whose size is proportional to the level of difficulty of achieving that sub-PO, and the total is 100%.
- 12. TM=Face to face, PT=Structured assignments, BM=Independent study.