

Universitas Negeri Surabaya Faculty of Engineering, Bachelor of Information Systems Study Program

Document Code

SEMESTER LEARNING PLAN CODE Course Family Credit Weight SEMESTER Compilation Date

Courses CODE Cou		ours	e Family		С	Credit Weight			s	EMEST	ER	Co Da	mpilati te	ion						
Linear and Matrix Algebra			57201030	5720103001 Compulsory Study Program Subjects T=3 P=0 ECTS=4.7			.77	1		Fel 202	oruary 2 24	26,								
AUTHORIZATION			SP Developer Course Cluster Coordinator Study Program C							Coor	dinato	r								
		Naim Rochmawati, S.Kom., M.T.				Arie S.K	Aries Dwi Indrayanti, S.Kom.,M.Kom.					l Kadek Dwi Nuryana, S.T., M.Kom.			.,					
Learning model	Case Studies																			
Program Learning	PLO study pro	gram th	nat is charç	ged t	o the	cours	se													
Outcomes	Program Object	tives (F	PO)																	
(PLO)	PO - 1	Studen	nts can comp	olete r	natrix	opera	tions													
	PO - 2	Studen	nts can solve	e syste	ems c	of linea	r equ	ations	S											
	PO - 3	Studen	nts can comp	olete v	/ector	r opera	tions													
	PO - 4	Studen	nts can comp	olete r	nume	rical lin	ear a	lgebr	a											
	PO - 5	Studen	nts are able t	to imp	leme	nt linea	ar alg	ebra 1	theory	using	g softv	vare ((Matl	ab)						
	PLO-PO Matrix	[
	PO Matrix at th	e end c	P.O PO-1 PO-2 PO-3 PO-4 PO-5 of each lea P.O -1 -2 -3 -4	rning	2	3	4	5	6	7	8	9 9	ek 10		12		14	15	16	
			-]
Short Course Description	The Linear Algeb (Information Man	l ora cours agemen	se is a cour t), PTI (Infor	rse wi rmatic	ith a on Teo	basis i chnolog	n Ma gy Ed	them lucation	atics, on), S	which I (Info	is ta rmatio	ught on Sy	to su sterr	upport oth ns) and IT	ier cou (Infori	urses in mation I	the de Enginee	epartm ering).	ents of	f MI
References	Main :																			
	 Kolman, Anton, H Element: Sibaroni, 	Bernard Ioward. 2 ary Linea ,Yuliant.	l. 2004.Eleme 2010.Elemer ar Algebra.T 2002. Buku	nentar ntary The Sa Ajar J	y Line Linea ailorFe Aljaba	ear Alg r Algeb oundati ar Linea	ebra. ora.Jo ion. 4 ar. ST	New ohn W I. Mat IT Te	Jears /iley & tthews lkom	ey: Pro Sons , K. R	entice , Inc . 2013	e Hall 3.Eler	nent	aryLinear	Algeb	ra.Univ	ersity o	of Quee	ensland	Ι.
	Supporters:																			

Support lecturer	ting	Dr. Yuni Yamasar Aries Dwi Indriyar	ri, S.Kom., M.Kom. nti, S.Kom., M.Kom.					
Final abilities of each learning stage		al abilities of h learning le	Evalua	tion	Ho Lea Stude [E	elp Learning, ning methods, nt Assignments, stimated time]	Learning materials	Assessment Weight (%)
	(SuÌ	b-PO)	Indicator	Criteria & Form	Offline(offline)	Online (<i>online</i>)	[References]	
(1)		(2)	(3)	(4)	(5)	(6)	(7)	(8)
1	Un coi abl ma	derstand matrix neepts and be le to operate trices	 1.1. Explain the concept of a matrix 2.2. Explain the types of matrices 3.3. Able to complete matrix operations 4.4. Explain the properties of matrix operations 	Form of Assessment : Participatory Activities	Approach: Scientific Model: Cooperative Method: Discussion, Presentation and 3 X 50 exercises	Observe the power point about matrix material and explore the operations of the 3 X 50 matrix	Material: Matrix concept References: Sibaroni, Yuliant. 2002. Textbook of Linear Algebra. STT Telkom	4%
2	De	termining the erse of a matrix	 1.1. Explain the meaning of matrix inverse 2.2. Explain the properties of inverse matrices 3.3. Find the inverse of a matrix of order 2x2 4.4. Find the inverse of a matrix of order nxn with a cofactor matrix 5.5. Find the inverse of a matrix of order nxn with elementary row transformation 	Form of Assessment : Participatory Activities	Approach: Scientific Model: Cooperative Method: Discussion, Presentation and 6 X 50 exercises	Observe power points about inverse matrix material and ask questions about inverse matrix material through discussion of the results of observations 6 X 50	Material: Inverse matrix Reader: Sibaroni, Yuliant. 2002. Textbook of Linear Algebra. STT Telkom	4%
3	De	termining the erse of a matrix	 1.1. Explain the meaning of matrix inverse 2.2. Explain the properties of inverse matrices 3.3. Find the inverse of a matrix of order 2x2 4.4. Find the inverse of a matrix of order nxn with a cofactor matrix 5.5. Find the inverse of a matrix of order nxn with a cofactor matrix 	Form of Assessment : Participatory Activities	Approach: Scientific Model: Cooperative Method: Discussion, Presentation and 6 X 50 exercises	Exploring matrix inverses and connecting matrix inverses with different orders - as well as analyzing different ways of determining the determinants of matrices that have different orders 6 X 50	Material: Inverse matrix Reader: Sibaroni, Yuliant. 2002. Textbook of Linear Algebra. STT Telkom	4%

4	Determining the determinant of a matrix	 1.1. Explain the meaning of determinant 2.2. Determine the value of the determinant of a matrix of order 2x2 3.3. determine the value of the determinant of the matrix of order 3x3 4.4. explain the properties of determinants 5.5. determine the value of the determinant of the nxn order matrix with the cofactor matrix 6.6. determine the value of the determinant of a matrix of order nxn using elementary row transformation (TBE) 	Form of Assessment : Participatory Activities	Approach: Scientific Model: Cooperative Method: Discussion, Presentation and 6 X 50 exercises	Observe the power point on matrix determinant material and explore the determinant of the 6 X 50 matrix	Material: Matrix determinants References: Kolman, Bernard. 2004. Elementary Linear Algebra. NewJearsey: Prentice Hall	4%
5	Determining the determinant of a matrix	 1.1. Explain the meaning of determinant 2.2. Determine the value of the determinant of a matrix of order 2x2 3.3. determine the value of the determinant of the determinant of the matrix of order 3x3 4.4. explain the properties of determinants 5.5. determine the value of the determinant of the nxn order matrix with the cofactor matrix 6.6. determine the value of the determinant of a matrix of order nxn using elementary row transformation (TBE) 	Form of Assessment : Participatory Activities	Approach: Scientific Model: Cooperative Method: Discussion, Presentation and 6 X 50 exercises	Connecting the determinants of matrices with different orders and analyzing the differences in how to determine the determinants of matrices that have different orders and presenting them 6 X 50	Material: Matrix determinants References: Kolman, Bernard. 2004. Elementary Linear Algebra. NewJearsey: Prentice Hall	4%
6	Can determine the solution of SPL (System of Linear Equations)	 1.1. Explain the meaning of SPL 2.2. Explain the types of SPL 3.3. Explain the types of SPL settlement 4.4. Determine the SPL solution with 2 equations and 2 variables 5.5. Determine the SPL solution with n equations and n variables using the matrix method 6.6. Determine the SPL solution with n equations and n variables using the Cramer method 7.7. Determine the SPL solution with n equations and n variables using the TBE method 	Form of Assessment : Participatory Activities	Approach: Scientific Model: Cooperative Method: Discussion, Presentation and 3 X 50 exercises	Exploring SPL 3 X 50	Material: Systems of Linear Equations References: Anton, Howard. 2010. Elementary Linear Algebra. John Wiley & Sons, Inc	5%

7	Students can complete Homogeneous SPL and SPL where there are many equations with many variables	 1.1. Determine the SPL solution where there are many equations for the number of variables 2.2. Determine the homogeneous SST solution 	Form of Assessment : Participatory Activities	Approach: Scientific Model: Cooperative Method: Discussion, Presentation and 3 X 50 exercises	Exploring Homogeneous SPL and SPL where the number of equations is 3 X 50 variables	Material: Systems of Linear Equations References: Anton, Howard. 2010.Elementary Linear Algebra.John Wiley & Sons, Inc	5%
8	Can determine the solution to SPL using Matlab and can use SPL for everyday problems	 1.1. Able to operate Matlab 2.2. Determine the SPL solution using Matlab 3.3. Completing SPL with daily problem cases 	Form of Assessment : Test	Approach: Scientific Model: Cooperative Method: Discussion, Presentation and 3 X 50 exercises	Exploring SPL using Matlab 3 X 50	Material: Systems of Linear Equations References: Anton, Howard. 2010.Elementary Linear Algebra.John Wiley & Sons, Inc	20%
9	Students work on UTS questions	UTS	Criteria: UTS Form of Assessment : Participatory Activities	UTS 1 X 1	UTS 1 X 1	Material: UTS Library:	4%
10	Understand vector concepts and be able to operate vectors	 1.1. Explain the meaning of vector 2.2. Explain how to represent vectors 3.3. Explain equivalent vectors, zero vectors and negative vectors 4.4. Complete vector operations Addition of vectors - Subtraction of vectors - Multiplication of vectors with scalars 5.5. Explain the properties of vector operations. Explain vector norms 	Form of Assessment : Participatory Activities	Approach: Scientific Model: Cooperative Method: Discussion, Presentation and 3 X 50 exercises	Observe the power point about vector material and ask questions about vector material through discussion of the results of observations 3 X 50	Material: equivalent vectors, zero vectors and negative vectors Library: Elementary Linear Algebra. The SailorFoundation. 4. Matthews, KR 2013. ElementaryLinear Algebra. University of Queensland.	4%
11	Able to operate vectors	 1.1. Explain the vector dot product and cross product multiplication operations 2.2. Determine the angle between two vectors 3.3. Implement recursion in some cases 	Form of Assessment : Participatory Activities	Approach: Scientific Model: Cooperative Method: Discussion, Presentation and 3 X 50 exercises	Explore the 3 X 50 vector	Material: Vector Library: Elementary Linear Algebra. The SailorFoundation. 4. Matthews, KR 2013. ElementaryLinear Algebra. University of Queensland. Material: multiplication of vector dot product and cross product Library: Elementary Linear Algebra. The SailorFoundation. 4. Matthews, KR 2013. ElementaryLinear Algebra. University of Queensland.	4%

12	Determining the general vector space from a set of vectors	 1.1. Explain real vector space 2.2. Explain subspace 3.3. Explain linear combinations 4.4. Building/stretching 5.5. Non-linear 6.6. base 	Form of Assessment : Participatory Activities	Approach: Scientific Model: Cooperative Method: Discussion, Presentation and 3 X 50 exercises	Presenting the results of the 3 X 50 vector material exercise	Material: general vector space from a set of vectors Library: Elementary Linear Algebra. The SailorFoundation. 4. Matthews, KR 2013. ElementaryLinear Algebra. University of Queensland.	4%
13	Students can use PGS to change non-orthonormal bases into orthonormal bases	1.1. Explain orthogonal sets and orthonormal sets2.2. Explain the Gram Schmidt Process	Form of Assessment : Participatory Activities	Approach: Scientific Model: Cooperative Method: Discussion, Presentation and 3 X 50 exercises	Observe power points about the Gram Schmidt Process material and ask questions about the Gram Schmidt Process material through discussion of the results of their observations 3 X 50	Material: Gram Schmidt Process Library: Elementary Linear Algebra. The SailorFoundation. 4. Matthews, KR 2013. ElementaryLinear Algebra. University of Queensland.	5%
14	Can determine Linear Transformation, Kernel and Range of a vector	1.1. Explain Linear transformation2.2. Explain Kernel and range	Form of Assessment : Practical Assessment	Approach: Scientific Model: Cooperative Method: Discussion, Presentation and 3 X 50 exercises	Explore Linear Transformation, Kernel and Range of a vector and analyze it 3 X 50	Material: Linear Transformation, Kernel and Range of a vector Library: Elementary Linear Algebra. The SailorFoundation. 4. Matthews, KR 2013. ElementaryLinear Algebra. University of Queensland.	4%
15	Can determine the eigenvalues and eigenvectors of a matrix	1.1. Explain eigenvalues2.2. Explain eigenvectors3.3. Determine the values and eigenvectors	Form of Assessment : Practical Assessment	Approach: Scientific Model: Cooperative Method: Discussion, Presentation and 3 X 50 exercises	Explore eigenvalues and eigenvectors and present the results of the exercise to determine 3 X 50 eigenvalues and vectors	Material: Determining the eigenvalues and eigenvectors of a matrix. Library: Elementary Linear Algebra. The SailorFoundation. 4. Matthews, KR 2013. ElementaryLinear Algebra. University of Queensland.	5%
16	Students work on UAS questions	UTS	Criteria: UTS Form of Assessment : Test	UAS 1 X 1	UAS 1 X 1	Material: UAS Literature:	20%

Evaluation Percentage Recap: Case Study

No	Evaluation	Percentage
1.	Participatory Activities	51%
2.	Practical Assessment	9%
3.	Test	40%
		100%

- Notes
 1. Learning Outcomes of Study Program Graduates (PLO Study Program) are the abilities possessed by each Study
 Program graduate which are the internalization of attitudes, mastery of knowledge and skills according to the level of their study
 - 2. The PLO imposed on courses are several learning outcomes of study program graduates (CPL-Study Program) which are used for the formation/development of a course consisting of aspects of attitude, general skills, special skills and knowledge.
 - 3. Program Objectives (PO) are abilities that are specifically described from the PLO assigned to a course, and are specific to the study material or learning materials for that course.
 - 4. Subject Sub-PO (Sub-PO) is a capability that is specifically described from the PO that can be measured or observed and is the final ability that is planned at each learning stage, and is specific to the learning material of the course.

- 5. Indicators for assessing abilities in the process and student learning outcomes are specific and measurable statements that identify the abilities or performance of student learning outcomes accompanied by evidence.
- 6. Assessment Criteria are benchmarks used as a measure or measure of learning achievement in assessments based on predetermined indicators. Assessment criteria are guidelines for assessors so that assessments are consistent and unbiased.
- Criteria can be quantitative or qualitative. 7. Forms of assessment: test and non-test.
- 8. Forms of learning: Lecture, Response, Tutorial, Seminar or equivalent, Practicum, Studio Practice, Workshop Practice, Field Practice, Research, Community Service and/or other equivalent forms of learning.
- 9. Learning Methods: Small Group Discussion, Role-Play & Simulation, Discovery Learning, Self-Directed Learning, Cooperative Learning, Collaborative Learning, Contextual Learning, Project Based Learning, and other equivalent methods.
- 10. Learning materials are details or descriptions of study materials which can be presented in the form of several main points and sub-topics.
- 11. The assessment weight is the percentage of assessment of each sub-PO achievement whose size is proportional to the level of difficulty of achieving that sub-PO, and the total is 100%.
- 12. TM=Face to face, PT=Structured assignments, BM=Independent study.