

Universitas Negeri Surabaya

Document Code

UNESA	Undergraduate Study Program in Informatics Engineering																		
				S	ΕN	IES	TE	R L	EA.	RN	IN	G F	PLA	N					
Courses			CODE		(Course Family			Credit Weight			SEME	STER		compilation ate				
Digital Systems			552	02030	085			Compulsory Study			T=3	P=0	ECTS=	4.77		1	J	uly 17, 2024	
AUTHORIZAT	TION		SP	Devel	loper			Program Subjects Course			ourse	Clus	ter Co	ordina	tor	Study	Progra	m Co	ordinator
Lasmins	Durait Dance				apand	ca, S.T	⁻ ., M.K	Com.								Aditya	. Prapan	ıca, S	.T., M.Kom.
Learning model	Project Based	ı Lea	ırnıng																
Program Learning	PLO study p	PLO study program that is charged to the course																	
Outcomes	Program Obj	Program Objectives (PO)																	
(PLO)	PLO-PO Matrix																		
		P.O																	
	PO Matrix at	the (end c	of eac	ch lea	arning	y stag	ge (Su	ıb-PO)									
			P.O									Wee	ek						
				1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
		L		<u> </u>	1	1		<u> </u>									1		
Short Course Description	This course d design of sim Boolean algeb Synchronous S Logic (ASL)	ole di ora, s	igital simplif	syste:	ms. L n of l	Jnders Boolea	tandin an fun	ng of a actions	analog , logic	and circu	digita ıit de	al con sign,	cepts, flip-flo	numbe ps, aritl	r syst hmetic	ems, lo	gic circi s, comb	uit an oinatic	ialysis using onal circuits,
References	Main:																		
	1. Malvir 2. Mano, 3. Tocci,	Morr	ris. 19	988. C	ompu	ıter Sy	stem	Archite	ecture,	Seco	nd E	dition.	Prent	ica-Hall	of Ind	dia. New	Delhi.	ntice-l	Hall.
	Supporters:																		
Supporting lecturer	Aditya Prapan	ca, S.	.T., M	l.Kom															
											Hel	p Lea	rning	,					

	icotarci							
	Week-	Final abilities of each learning stage	f each		Help Learni Learning met Student Assign [Estimated (Learning materials	Assessment Weight (%)
	(Sub-PO)		Indicator	Criteria & Form	Offline (offline)	Online (online)	[References]	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
-	1	Describe digital systems and analog systems	1. Describe the differences between analog and digital systems. 2. Explain the application of digital systems in everyday life	Criteria: According to the assessment rubric Form of Assessment: Participatory Activities	Assignment and questions and answers 2 X 50	Assignments and questions and answers	Material: analog and digital systems References: Malvino, A.Paul. 1989. Digital Computer Electronics, Introduction to Microcomputers. Erlangga Publishers.	5%

2	Calculating number conversions	1. Calculating the conversion of decimal to binary, octal, hexadecimal 2. Calculating the conversion of binary, octal, hexa-decimal, to decimal	Criteria: According to the assessment rubric Form of Assessment: Participatory Activities	Assignment and discussion 2 X 50		Material: number conversion Reader: Malvino, A.Paul. 1989. Digital Computer Electronics, Introduction to Microcomputers. Erlangga Publishers.	O%
3	Basic gates (logic gates)	1. Calculating the conversion of decimal to binary, octal, hexadecimal 2. Calculating the conversion of binary, octal, hexa-decimal, to decimal	Criteria: According to the assessment rubric Form of Assessment: Participatory Activities	Assignment and discussion 3 X 50	Assignments and discussions	Material: Basic gates (logic gates) References: Malvino, A. Paul. 1989. Digital Computer Electronics, Introduction to Microcomputers. Erlangga Publishers.	0%
4	Analyze the properties of logic gates	Describe the properties of logic gates (logic gates) Simplify logic circuits using Boolean algebra	Criteria: According to the assessment rubric Form of Assessment: Participatory Activities	Presentation, discussion 3 X 50	Presentations, discussions	Material: logic gates Reference: Malvino, A.Paul. 1989. Digital Computer Electronics, Introduction to Microcomputers. Erlangga Publishers.	5%
5	Analyzing the properties of logic gates, KMap and Boolean Algebra	Describe the properties of logic gates (logic gates) Simplify logic circuits using Boolean algebra	Criteria: According to the assessment rubric Form of Assessment: Participatory Activities	Presentation, discussion 3 X 50	Presentations, discussions	Material: logic gates, KMap and Boolean Algebra References: Malvino, A.Paul. 1989. Digital Computer Electronics, Introduction to Microcomputers. Erlangga Publishers.	0%
6	Calculating with arithmetic logic	Describe how circuits work using arithmetic logic	Criteria: According to the assessment rubric Form of Assessment: Participatory Activities	Discussion and assignment 3 X 50	Discussions and assignments	Material: arithmetic logic Reader: Malvino, A. Paul. 1989. Digital Computer Electronics, Introduction to Microcomputers. Erlangga Publishers.	5%
7	Designing a circuit using the Karnaugh Map method	Simplify circuits with the Karnaugh Map	Criteria: According to the assessment rubric Form of Assessment: Participatory Activities	Discussion and assignment 3 X 50	Discussions and assignments		5%
8	UTS	Simplify circuits with the Karnaugh Map	Criteria: According to the assessment rubric Form of Assessment: Participatory Activities	Discussion and assignment 3 X 50	Discussions and assignments		10%

_	· · · · · · · · · · · · · · · · · · ·		T	ı	T	1	
9	Analyze the properties of FLIP FLOP	Describe the characteristics of the types of Flip Flop 2. Analyze the circuit	Criteria: According to the assessment rubric	Practice questions and give assignments 2 X 50	Practice questions and assignments	Material: FLIP FLOP Reference: Mano, Morris. 1988. Computer Systems Architecture, Second Edition. Prentica-Hall of India. New Delhi.	0%
10	Analyze counter and register circuits	Describe the properties of counter and register circuits. 2. Design a counter application circuit	Criteria: According to the assessment rubric	Discussion and assignment 2 X 50	Discussion and assignment	Material: counters and registers Bibliography: Mano, Morris. 1988. Computer Systems Architecture, Second Edition. Prentica-Hall of India. New Delhi.	0%
11	Analyzing multiplexer and seven segment circuits	1. Describe the properties of multiplexer and seven segment circuits 2. Design multiplexer and seven segment application circuits	Criteria: According to the assessment rubric	Discussion and assignment 2 X 50	Discussion and assignment	Material: multiplexer and seven segments References: Malvino, A.Paul. 1989. Digital Computer Electronics, Introduction to Microcomputers. Erlangga Publishers.	0%
12	Analyze the properties of FLIP FLOP	1. Explaining FLIP FLOP2. Analyze the properties of FLIP FLOP	Criteria: According to the assessment rubric	Demonstration of 3 X 50 digital tasks	Demonstration of digital tasks	Material: FLIP FLOP Bibliography: Malvino, A. Paul. 1989. Digital Computer Electronics, Introduction to Microcomputers. Erlangga Publishers.	0%
13	Analyze the properties of FLIP FLOP	1. Explaining FLIP FLOP2. Analyze the properties of FLIP FLOP	Criteria: According to the assessment rubric Form of Assessment: Participatory Activities	Demonstration of 3 X 50 digital tasks	Demonstration of digital tasks	Material: FLIP FLOP Bibliography: Malvino, A. Paul. 1989. Digital Computer Electronics, Introduction to Microcomputers. Erlangga Publishers.	10%
14	Application of logic gates in digital circuits	Explaining Register Circuits 2. Applying in circuits	Criteria: According to the assessment rubric Forms of Assessment: Participatory Activities, Project Results Assessment / Product Assessment, Practical Assessment	Demonstration of 3 X 50 digital tasks	Demonstration of digital tasks	Material: logic gates References: Malvino, A.Paul. 1989. Digital Computer Electronics, Introduction to Microcomputers. Erlangga Publishers.	10%
15	Application of logic gates in digital circuits	1. Explain the Registers circuit. 2. Apply the Register circuit	Criteria: According to the assessment rubric Form of Assessment: Project Results Assessment / Product Assessment	Demonstration of 3 X 50 digital tasks	Demonstration of digital tasks	Material: logic gates in digital circuits Reference: Malvino, A.Paul. 1989. Digital Computer Electronics, Introduction to Microcomputers. Erlangga Publishers.	20%

16	UAS	1. Explain the Registers circuit. 2. Apply the Register circuit	Criteria: According to the assessment rubric Form of Assessment: Project Results Assessment / Product Assessment	Demonstration of 3 X 50 digital tasks	Demonstration of digital tasks	Material: logic gates in digital circuits Reference: Malvino, A.Paul. 1989. Digital Computer Electronics, Introduction to Microcomputers. Erlangga Publishers.	30%
----	-----	--	---	---	--------------------------------	--	-----

Evaluation Percentage Recap: Project Based Learning

No	Evaluation	Percentage
1.	Participatory Activities	43.33%
2.	Project Results Assessment / Product Assessment	53.33%
3.	Practical Assessment	3.33%
		99.99%

Notes

- Learning Outcomes of Study Program Graduates (PLO Study Program) are the abilities possessed by each Study Program graduate which are the internalization of attitudes, mastery of knowledge and skills according to the level of their study program obtained through the learning process.
- The PLO imposed on courses are several learning outcomes of study program graduates (CPL-Study Program)
 which are used for the formation/development of a course consisting of aspects of attitude, general skills, special skills
 and knowledge.
- 3. **Program Objectives (PO)** are abilities that are specifically described from the PLO assigned to a course, and are specific to the study material or learning materials for that course.
- 4. **Subject Sub-PO (Sub-PO)** is a capability that is specifically described from the PO that can be measured or observed and is the final ability that is planned at each learning stage, and is specific to the learning material of the course.
- Indicators for assessing ability in the process and student learning outcomes are specific and measurable statements that identify the ability or performance of student learning outcomes accompanied by evidence.
- 6. **Assessment Criteria** are benchmarks used as a measure or measure of learning achievement in assessments based on predetermined indicators. Assessment criteria are guidelines for assessors so that assessments are consistent and unbiased. Criteria can be quantitative or qualitative.
- 7. Forms of assessment: test and non-test.
- 8. **Forms of learning:** Lecture, Response, Tutorial, Seminar or equivalent, Practicum, Studio Practice, Workshop Practice, Field Practice, Research, Community Service and/or other equivalent forms of learning.
- Learning Methods: Small Group Discussion, Role-Play & Simulation, Discovery Learning, Self-Directed Learning, Cooperative Learning, Collaborative Learning, Contextual Learning, Project Based Learning, and other equivalent methods.
- 10. Learning materials are details or descriptions of study materials which can be presented in the form of several main points and sub-topics.
- 11. The assessment weight is the percentage of assessment of each sub-PO achievement whose size is proportional to the level of difficulty of achieving that sub-PO, and the total is 100%.
- 12. TM=Face to face, PT=Structured assignments, BM=Independent study.