UNESA

	Universitas Negeri Surabaya									Document Code						
UNESA	Ge	Faculty of Social Sciences and Law Geography Education Undergraduate Study Program														
SEMESTER LEARNING PLAN																
Courses		CODE		Course Fa	nily	Cred	lit Weight	t	SEMESTE	R	Compi	ation D	ate			
	ED REMOTE SENSIN	G 872020020	7	Study Program		-	P=0 EC		4		July 17					
AUTHOR	ZATION	SP Develo	per	Elective Co		rse Cl	uster		Study Prog	gram Coo	ordinato	r				
			-		Cool	rdinat	or									
		Dr. Eko Bud	Dr. Eko Budiyanto, M.Si.			Dr. Eko Budiyanto, M.Si.			Dr. Nugroho Hari Purnomo, S.P., M.Si.							
Learning model	Project Based L	earning														
Program	PLO study pro	gram that is cha	urged to the co	ourse												
Learning Outcome	PLO F	Able to make app	oropriate decisio	ons to solve		onal pr	roblems ai	nd transfo	rmative geo	graphy lea	arning by	utilizing	various	s learnin	g resources	s
(PLO)	PLO-7	based on science and technology and the arts PLO-7 Able to make appropriate decisions to resolve regional problems in a spatial context based on an integrated geographic approach														
	Program Obje										- <u>j</u>	331-				
	PLO-PO Matrix	. ,														
		P.0	PLO-5	5	PLO-7											
	PO Matrix at th	ne end of each le	arning stage	(Sub-PO)												
			annig olago	(00.0 1 0)												
		P.0						We	ek							
		1.0	2 3	5 6 7 8 9 10 11					12 13 14 15 16			16				
			2 3	4	5	0	'	0 3	10	11	12	15	14	15	10	
Short Course Descript		sience and technolo	ogy of remote s	ensing for th	ne study	of nat	tural resou	irces and	developmen	t.						
Reference	es Main :															
1. Li Y, Shao J hal 621-627, Skidmore A. Sensing, Se by adaptive		ao J, Yang H, Bai J 627, DOI 10.1007/ e A. 2002. Enviror , Second Edition, (tive sampling and (Academic, New Yo	s00254-008-13 nmental Modelli Cambidge Unive density estimati	31-z Madho ing with GIS ersity Press	k, V, Lai and Re , Cambr	ndgret emote idge. v	be, DA,. 20 Sensing, van Keme	002. A pro Taylor & enade, CH	ocessing moo Francis, Lor IM, La Poutr	del for ren Idon. Ree e, H, Mol	note sen s, WG,. ken, RJ	sing dat 2001. F ,. 1999.	a analys Physical Unsupe	sis, IEE Principl ervised c	E Life Fello es of Rem lass detect	ow . ote tion
	Supporters:															
Supporti lecturer	ng Prof. Dr. Ketut P Dr. Eko Budiyan Dr. Aida Kurniaw Putu Wirabumi,	to, S.Pd., M.Si. /ati, S.Pd., M.Si.														
Week-	Final abilities of each learning stage	Eva	Evaluation		Le		Help Learning, .earning methods, udent Assignments, [Estimated time]		Learning materials			Assessme Weight (%				
	(Sub-PO)	Indicator	Criteria & F		ffline(ffline)	0	online (<i>on</i>	nline)								
(1)	(2)	(3)	(4)		(5)		(6)				(7)				(8)	
1	Students are able to apply remote sensing concepts to analyze land resource potential in various landscapes based on land cover analysis through multi-level remote sensing data.	Explain the concept of radiometric and geometric correction + Explain the components of atmospheric image correction - Perform TOA correction and image to image to image to correction procedures on Landsat 7 ETM / Landsat 8 OLI images	Criteria: • The concept the interactic radiation and atmosphere (Radiance, I Photon) • TC correction ar Image to Ima Correction procedures • Landsat 7 E Landsat 8 O images Form of Assessment Participatory Activition	ot of 2 2 on of 2 2 t the 2 Energy, DA age , TM, LI	=FLINE X 50 X 50	2 X 5	20		Material: 1. Adams JB, Gillespie AR, 2006, Remo Sensing of Landscape with Spectral Images – A Physical Modeling Approach, Cambridge Universi Press, New York. 2. Alexakis DD, Hadjimitsis, DG Agapiou, A., 2013. Integrated use of remote sensing, GIS, and precipitation data for the assessment of soil erosion rate in the catchment area of "Yalias" in Cyprus. Atmospheric Research DOI. 10.1016/j.atmosres.2013.02.013. 3. Borengasserm, M., Hungate, W., Watkins, R., 2008. Hyperspectral Remote Sensing – Principles and Applications. CRC Press. New York. References:		– A versity s, DG, nent earch.	5%				

· · · · · · · · · · · · · · · · · · ·						· · · · · · · · · · · · · · · · · · ·	
2	Students are able to apply remote sensing concepts to analyze land resource potential in various landscapes based on land cover analysis through multi-level remote sensing data.	Explain the concept of image sharpening and spatial filtering • Perform contrast stretching procedures using the histogram equalization method, Gramm- Schmidt method, Principal Component, and Convolution on Landsat 7 ETM, ASTER, or MODIS images	Criteria: • Explain the concept of image sharpening and spatial filtering • Perform contrast stretching procedures using the histogram equalization method, Gramm- Schmidt method, Principal Component, and Convolution on Landsat 7 ETM, ASTER, or MODIS images Form of Assessment : Participatory Activities	OFFLINE 2 X 50 2 X 50		 Material: 20. Yang Q., Xie, Y., Li, W., Jiang, Z., Li., H., Qin, X., 2013. Assessing soil erosion risk in karst areas using fuzzy modeling and method of the analytical hierarchy process. Environ. Earth Sci. DOI 10.1007/s12665-013-2432-8. 21. Zhang M., Wang K., Zhang C., Chen H., Liu H., Yue Y., Luffman I., Qi X., 2011, Using the Radial Basis Function Network Model to Assess Rocky Desertification in Northwest Guangxi China, Environ. Earth Sci. 62:69-76, DOI 101007/s12665- 010-0498-2. 22. Zhao, S., Cheng, W., Zhou, C., Chen, X., Zhang, S., Zhou, Z., Liu, H., Chai, H., 2011. Accuracy assessment of the ASTER GDEM and SRTM DEM: an example in the Loess Plateau and North China Plain of China. International Journal of Remote Sensing. p 1-13. ISSN 1366- 5901. 	5%
3	Students are able to apply remote sensing concepts to analyze land resource potential in various landscapes based on land cover analysis through multi-level remote sensing data.	Explain the concept of image sharpening and spatial filtering • Perform contrast stretching procedures using the histogram equalization method, Gramm- Schmidt method, Principal Component, and Convolution on Landsat 7 ETM, ASTER, or MODIS, images	Criteria: • Explain the concept of image sharpening and spatial filtering • Perform contrast stretching procedures using the histogram equalization method, Gramm- Schmidt method, Principal Component, and Convolution on Landsat 7 ETM, ASTER, or MODIS images Form of Assessment : Participatory Activities	2 X 50	OFFLINE	 Material: 20. Yang Q., Xie, Y., Li, W., Jiang, Z., Li., H., Qin, X., 2013. Assessing soil erosion risk in karst areas using fuzzy modeling and method of the analytical hierarchy process. Environ. Earth Sci. DOI 10.1007/s12665-013-2432-8. 21. Zhang M., Wang K., Zhang C., Chen H., Liu H., Yue Y., Luffman I., Qi X., 2011, Using the Radial Basis Function Network Model to Assess Rocky Desertification in Northwest Guangxi China, Environ. Earth Sci. 62:69-76, DOI 101007/s12665- 010-0498-2. 22. Zhao, S., Cheng, W., Zhou, C., Chen, X., Zhang, S., Zhou, Z., Liu, H., Chai, H., 2011. Accuracy assessment of the ASTER GDEM and SRTM DEM: an example in the Loess Plateau and North China Plain of China. International Journal of Remote Sensing. p 1-13. ISSN 1366- 5901. References: 	5%
4	Students are able to apply the results of land form interpretation from multi-resolution remote sensing image data as a basis for regional development.	Explain the concept of image sharpening and spatial filtering • Perform contrast stretching procedures using the histogram equalization method, Gramm- Schmidt method, Principal Component, and Convolution on Landsat 7 ETM, ASTER, or MODIS images	Criteria: • Explain the concept of image sharpening and spatial filtering • Perform contrast stretching procedures using the histogram equalization method, Gramm- Schmidt method, Principal Component, and Convolution on Landsat 7 ETM, ASTER, or MODIS images Form of Assessment : Participatory Activities	OFFLINE 2 X 50 2 X 50		Material: 17. The Yale Center for Earth Observation. 2010. Obtaining and Processing MODIS Data. http://www.yale.edu/ceo/Documentation/MODIS.pdf 18. The Yale Center for Earth Observation. 2012. ASTER Image. http://www.yale.edu/ceo/Documentation/ASTER.pdf 19. Wiegand, C., Rutzinger, M., Heinrich, K., Geitner, C., 2013. Automated extraction of shallow erosion areas based on multi -temporal ortho- imagery. Remote Sensing. 5: 2292-2307. DOI: 10.3390/rs5052292. References:	5%
5	Students are able to interpret and calculate the accuracy of interpreting medium resolution images	Explain the concept of spectral pattern recognition. • Carrying out digital classification and interpretation processes • Calculating interpretation accuracy using the matrix method and Kappa Accuracy Method	Criteria: • Visual, Spectral and Hybrid interpretation concepts • Landsat 7 ETM imagery Form of Assessment : Participatory Activities	OFFLINE 2 X 50 2 X 50	2 X 50 2 X 50	Material: 15. Suharyadi, 2012. Hybrid interpretation of medium spatial resolution satellite images for the study of building densification in the urban area of Yogyakarta. Desertation. Faculty of Geography. Gadjah Mada University. Yogyakarta. 16. Tam, VT, Batelaan, O., 2011. A multi-analysis remote- sensing approach for mapping groundwater resources in the karstic Meo Vac Valley, Vietnam. Hydrogeology Journal. 19: 275-287. DOI. 10.1007/s10040-010-0684-z 17. The Yale Center for Earth Observation. 2010. Obtaining and Processing MODIS Data. http://www.yale.edu/ceo/Documentation/MODIS.pdf References:	5%
6	Students are able to apply the results of land use interpretation from multi-resolution remote sensing image data as a basis for regional development	Explain the concept of Object Based Classification • Carry out object-based interpretation and classification of high resolution images	Form of Assessment : Project Results Assessment / Product Assessment	OFFLINE 2 X 50		Material: 15. Suharyadi, 2012. Hybrid interpretation of medium spatial resolution satellite images for the study of building densification in the urban area of Yogyakarta. Desertation. Faculty of Geography. Gadjah Mada University. Yogyakarta. 16. Tam, VT, Batelaan, O., 2011. A multi-analysis remote- sensing approach for mapping groundwater resources in the karstic Meo Vac Valley, Vietnam. Hydrogeology Journal. 19: 275-287. DOI. 10.1007/s10040-010-0684-z 17. The Yale Center for Earth Observation. 2010. Obtaining and Processing MODIS Data. http://www.yale.edu/ceo/Documentation/MODIS.pdf References:	5%

			1				
7	Students are able to apply the results of land use interpretation from multi-resolution remote sensing image data as a basis for regional development	Explain the concept of Object Based Classification • Carry out object-based interpretation and classification of high resolution images	Criteria: • Object Based Classification Concepts • Quickbird Images • GoogleEarth Images Form of Assessment : Project Results Assessment / Product Assessment	2 X 50		Material: 16. Tam, VT, Batelaan, O., 2011. A multi- analysis remote-sensing approach for mapping groundwater resources in the karstic Meo Vac Valley, Vietnam. Hydrogeology Journal. 19: 275- 287. DOI. 10.1007/s10040-010-0684-z 17. The Yale Center for Earth Observation. 2010. Obtaining and Processing MODIS Data. http://www.yale.edu/ceo/Documentation/MODIS.pdf 18. The Yale Center for Earth Observation. 2012. ASTER Image. http://www.yale.edu/ceo/Documentation/ASTER.pdf References:	5%
8	UTS PJ Continue		Form of Assessment : Test	2 X 50			10%
9	Students are able to apply the image spectral transformation process	 Explain the concept of image spectral transformation Explain the procedures for adding channels, RBFN, Principal Component Analysis (PCA) and the Kauth- Thomas transformation method 	Criteria: • Concept of spectral transformation • Landsat 8 OLI imagery Form of Assessment : Practice / Performance		ONLINE 2 X 50	Material: 16. Tam, VT, Batelaan, O., 2011. A multi- analysis remote-sensing approach for mapping groundwater resources in the karstic Meo Vac Valley, Vietnam. Hydrogeology Journal. 19: 275- 287. DOI. 10.1007/s10040-010-0684-z 17. The Yale Center for Earth Observation. 2010. Obtaining and Processing MODIS Data. http://www.yale.edu/ceo/Documentation/MODIS.pdf 18. The Yale Center for Earth Observation. 2012. ASTER Image. http://www.yale.edu/ceo/Documentation/ASTER.pdf References:	5%
10	Students are able to apply the image spectral transformation process	• Explain the concept of image spectral transformation • Explain the procedures for adding channels, RBFN, Principal Component Analysis (PCA) and the Kauth- Thomas transformation method	Criteria: • Explain the concept of image spectral transformation • Explain the procedures for adding channels, RBFN, Principal Component Analysis (PCA) and the Kauth-Thomas transformation method Form of Assessment : Practice / Performance	OFFLINE		Material: 9. Newman, ME, McLaren, KP, Wilson, BS, 2011. Use of Object-oriented classification and fragmentation analysis (1985-2008) to identify important areas for conservation in Cockpit County Jamaica. Environ Monit Assess 172:391-406. 10. Papandaki, ES, Mertikas, SP, Sarris, A., 2011. Identification of lineaments with possible structural origins using aster images and DEM derived products in western Crete, Greece. EARSel eProceedings 10, 1/2011. 11. Rahman, MR, Shi, ZH, Chongfa, C., 2009. Soil erosion hazard evaluation- an integrated use of remote sensing, GIS, and statistical approaches with biophysiological parameters towards management strategies. Ecological Modelling. DOI. 10.1016/j.ecomodel.2009.04.004 References:	5%
11	Students are able to apply the image spectral transformation process	• Explain the concept of image spectral transformation Explain the procedures for adding channels, RBFN, Principal Component Analysis (PCA) and the Kauth- Thomas transformation method	Criteria: • Concept of spectral transformation • Landsat 8 OLI imagery Form of Assessment : Project Results Assessment / Product Assessment	OFFLINE 2 X 50	-	Material: 6. Elachi, C., Zyl JV, 2006, Introduction to the Physics and Techniques of Remote Sensing, Second Edition, John Wiley & Sons, New Jersey. References:	5%
12		Explains the concept of Sub-Pixel Analysis transformation, Spectral Mixture Analysis, and Artificial Neural Network Analysis	Criteria: • the concept of Sub-Pixel Analysis, Spectral Mixture Analysis, and, Artificial Neural Network Analysis • Landsat 8 OLI Imagery Form of Assessment of Project Results / Product Assessment, Practices / Performance	OFFLINE 2 X 50		Material: 11. Rahman, MR, Shi, ZH, Chongfa, C., 2009. Soil erosion hazard evaluation- an integrated use of remote sensing, GIS, and statistical approaches with biophysiological parameters towards management strategies. Ecological Modelling. DOI. 10.1016/j.ecomodel.2009.04.004 12. Reuter, H.I., Nelson, A., Strobl., P., Mehl, W., Jarvis, A., 2009, A first assessment of ASTER GDEM tiles for absolute accuracy, relative accuracy and terrain parameters. IEEE. DOI: 978- 1-4244-3395-7 References:	5%
13	Students are able to apply Sub-Pixel Analysis, Spectral Mixture Analysis, and Artificial Neural Network Analysis methods	Explains the concept of Sub-Pixel Analysis transformation, Spectral Mixture Analysis, and Artificial Neural Network Analysis	Criteria: • the concept of Sub-Pixel Analysis, Spectral Mixture Analysis, and, Artificial Neural Network Analysis • Landsat 8 OLI Imagery Form of Assessment : Project Results Assessment / Product Assessment	OFFLINE 2 X 50		Material: 11. Rahman, MR, Shi, ZH, Chongfa, C., 2009. Soil erosion hazard evaluation- an integrated use of remote sensing, GIS, and statistical approaches with biophysiological parameters towards management strategies. Ecological Modelling. DOI. 10.1016/j.ecomodel.2009.04.004 12. Reuter, H.I., Nelson, A., Strobl., P., Mehl, W., Jarvis, A., 2009, A first assessment of ASTER GDEM tiles for absolute accuracy, relative accuracy and terrain parameters. IEEE. DOI: 978- 1-4244-3395-7 References:	10%
14	Students are able to correct data values and topography, Topographic Modeling, and contouring	Explain the concepts of DEM, DTM, and DSM • Carry out morphological modeling	Criteria: - SRTM Interferrometry Radar Imagery - GDEM ASTER Imagery Forms of Assessment : Project Results Assessment / Product Assessment, Practical Assessment	OFFLINE 2 X 50		Material: 11. Rahman, MR, Shi, ZH, Chongfa, C., 2009. Soil erosion hazard evaluation- an integrated use of remote sensing, GIS, and statistical approaches with biophysiological parameters towards management strategies. Ecological Modelling. DOI. 10.1016/j.ecomodel.2009.04.004 12. Reuter, H.I., Nelson, A., Strobl., P., Mehl, W., Jarvis, A., 2009, A first assessment of ASTER GDEM tiles for absolute accuracy, relative accuracy and terrain parameters. IEEE. DOI: 978- 1-4244-3395-7 References:	5%

15	Students are able to correct data values and topography, Topographic Modeling, and contouring	Explain the concepts of DEM, DTM, and DSM • Carry out morphological modeling	Criteria: - SRTM Interferrometry Radar Imagery - GDEM ASTER Imagery Form of Assessment : Project Results Assessment / Product Assessment	OFFLINE 2 X 50	Material: 11. Rahman, MR, Shi, ZH, Chongfa, C., 2009. Soil erosion hazard evaluation- an integrated use of remote sensing, GIS, and statistical approaches with biophysiological parameters towards management strategies. Ecological Modelling, DOI. 10.1016/j.ecomodel.2009.04.004 12. Reuter, H.I., Nelson, A., Strobl., P., Mehl, W., Jarvis, A., 2009, A first assessment of ASTER GDEM tiles for absolute accuracy, relative accuracy and terrain parameters. IEEE. DOI: 978- 1-4244-3395-7 References:	10%
16		UAS	Form of Assessment : Project Results Assessment / Product Assessment			10%

Evaluation Percentage Recap: Project Based Learning

No	Evaluation	Percentage
1.	Participatory Activities	25%
2.	Project Results Assessment / Product Assessment	50%
3.	Practical Assessment	2.5%
4.	Practice / Performance	12.5%
5.	Test	10%
		100%

Notes

- 1. Learning Outcomes of Study Program Graduates (PLO Study Program) are the abilities possessed by each Study Program graduate which are the internalization of attitudes, mastery of knowledge and skills according to the level of their study program obtained through the learning process.
- 2. The PLO imposed on courses are several learning outcomes of study program graduates (CPL-Study Program) which are used for the formation/development of a course consisting of aspects of attitude, general skills, special skills and knowledge.
- 3. **Program Objectives (PO)** are abilities that are specifically described from the PLO assigned to a course, and are specific to the study material or learning materials for that course.
- Subject Sub-PO (Sub-PO) is a capability that is specifically described from the PO that can be measured or observed and is the final ability that is planned at each learning stage, and is specific to the learning material of the course.
- Indicators for assessing ability in the process and student learning outcomes are specific and measurable statements that identify the ability or performance of student learning outcomes accompanied by evidence.

Assessment Criteria are benchmarks used as a measure or measure of learning achievement in assessments based on predetermined indicators.
 Assessment criteria are guidelines for assessors so that assessments are consistent and unbiased. Criteria can be quantitative or qualitative.

- Forms of assessment: test and non-test.
 Forms of learning: Lecture, Response, Tutorial, Seminar or equivalent, Practicum, Studio Practice, Workshop Practice, Field Practice, Research, Community Service and/or other equivalent forms of learning.
- Community Service and/or other equivalent forms of learning. 9. Learning Methods: Small Group Discussion, Role-Play & Simulation, Discovery Learning, Self-Directed Learning, Cooperative Learning, Collaborative
- Learning, Contextual Learning, Project Based Learning, and other equivalent methods. 10. Learning materials are details or descriptions of study materials which can be presented in the form of several main points and sub-topics.
- 11. The assessment weight is the percentage of assessment of each sub-PO achievement whose size is proportional to the level of difficulty of achieving that sub-PO, and the total is 100%.
- 12. TM=Face to face, PT=Structured assignments, BM=Independent study.