

## Universitas Negeri Surabaya Faculty of Engineering, Electrical Engineering Undergraduate Study Program

Document Code

## SEMESTER LEARNING PLAN **Credit Weight** Compilation Date Courses CODE **Course Family** SEMESTER Basic Algorithms and Programming Practicum II 2020101398 T=0 P=1 ECTS=1.59 3 July 18, 2024 AUTHORIZATION SP Developer Course Cluster Coordinator **Study Program Coordinator** Prof. Dr. I Gusti Putu Asto Pradini Puspitaningayu, Ph.D. Dr. Lusia Rakhmawati, S.T., Buditjahjanto, S.T., M.T. M.T. Learning **Project Based Learning** model Program PLO study program that is charged to the course Learning **Program Objectives (PO)** Outcomes (PLO) PO - 1 Students are able to apply algorithms and programming languages in solving problems based on engineering principles PO - 2 Able to communicate effectively both verbally and in writing regarding basic topics of algorithms and programming 2. PO - 3 Students are able to identify simple problems and formulate appropriate algorithms for solving problems PO - 4 Students are able to formulate appropriate programming languages for solving problems **PLO-PO** Matrix P.O PO-1 PO-2 PO-3 PO-4 PO Matrix at the end of each learning stage (Sub-PO) P.O Week 1 5 2 3 4 6 7 8 9 10 11 12 13 14 15 16 PO-1 PO-2 PO-3 PO-4 The Basic Algorithms and Programming course is a course with a project-based learning model that discusses the introduction and understanding of logic, algorithms, basic programming languages, program structure, data types, algorithm notation, control, repetition, functions, sequential processing, as well as practice questions. simple problems to be able to analyze problems related to logic or ways of thinking which are then implemented in the Python programming language. Short Course Description References Main : 1. 1. Downey, Allen B. 2012. Think Python. O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA, United States 2. 2. Kulikov, Alexander S., and Pevzner, P. 2018. Learning Algorithms Through Programming and Puzzle Solving. United States of America: Active Learning Technologies. Supporters: Pradini Puspitaningayu, S.T., M.T., Ph.D. Parama Diptya Widayaka, S.ST., M.T. Supporting lecturer

| Week- | Final abilities of each learning stage                                                                                                                                     | Evaluation                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                             | Help Learning,<br>Learning methods,<br>Student Assignments,<br>[Estimated time] |                                                      | Learning<br>materials<br>[ References                                                                                                                                                                                                                                                                                                                                                                           | Assessment<br>Weight (%) |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
|       | (Sub-PO)                                                                                                                                                                   | Indicator                                                                                                                                                                                                                                                                                                                                                                   | Criteria & Form                                                                                             | Offline (<br>offline )                                                          | Online ( <i>online</i> )                             | 1                                                                                                                                                                                                                                                                                                                                                                                                               |                          |
| (1)   | (2)                                                                                                                                                                        | (3)                                                                                                                                                                                                                                                                                                                                                                         | (4)                                                                                                         | (5)                                                                             | (6)                                                  | (7)                                                                                                                                                                                                                                                                                                                                                                                                             | (8)                      |
| 1     | Students are able<br>to analyze basic<br>concepts of logic<br>and algorithms,<br>basic structures,<br>characteristics of<br>algorithms, and<br>properties of<br>algorithms | <ol> <li>Accuracy in<br/>explaining<br/>logic,<br/>algorithm and<br/>programming<br/>concepts</li> <li>Accuracy in<br/>explaining the<br/>role of logic<br/>and<br/>algorithms<br/>applied in<br/>programming<br/>languages to<br/>solve<br/>problems</li> </ol>                                                                                                            | Criteria:<br>Assessment rubric<br>Form of Assessment :<br>Participatory Activities,<br>Practice/Performance | Presentations,<br>lectures and<br>discussions<br>2 X 50                         | Presentations, lectures<br>and discussions<br>2 X 50 | Material:<br>Basic logic<br>and<br>programming<br>References:<br>1. Deitel,<br>Paul, and<br>Deitel,<br>Harvey. 2012.<br>C How to<br>Program 7th<br>Edition.<br>United States<br>of America:<br>Pearson<br>Education,<br>Inc.                                                                                                                                                                                    | 0%                       |
| 2     | Students are able<br>to implement<br>notation for writing<br>descriptive<br>sentence<br>algorithms,<br>pseudocode, and<br>flowcharts                                       | <ol> <li>Accuracy in<br/>explaining<br/>basic logic<br/>and<br/>algorithms</li> <li>Accuracy in<br/>explaining the<br/>characteristics<br/>of the<br/>algorithm</li> <li>Accuracy in<br/>explaining the<br/>nature of the<br/>algorithm</li> <li>Accuracy in<br/>explaining<br/>algorithm<br/>notation</li> </ol>                                                           | Criteria:<br>The maximum score<br>per item is 25                                                            | Presentations,<br>lectures and<br>discussions<br>2 X 50                         | Presentations, lectures<br>and discussions<br>2 X 50 | Material:<br>Logic<br>concepts,<br>algorithm<br>definitions,<br>algorithm<br>concepts,<br>algorithm<br>structures,<br>properties and<br>characteristics<br>of algorithms<br><b>References:</b><br>2. Kulikov,<br>Alexander S.,<br>and Pevzner,<br>P. 2018.<br>Learning<br>Algorithms<br>Through<br>Programming<br>and Puzzle<br>Solving.<br>United States<br>of America:<br>Active<br>Learning<br>Technologies. | 0%                       |
| 3     | Students are able<br>to describe the<br>parts or structures<br>contained in a C/C-<br>based program                                                                        | <ol> <li>Accuracy in<br/>explaining the<br/>structure of a<br/>program</li> <li>Accuracy in<br/>implementing<br/>the program<br/>structure</li> </ol>                                                                                                                                                                                                                       | Criteria:<br>Assessment rubric                                                                              | Presentations,<br>lectures and<br>discussions<br>2 X 50                         | Presentations, lectures<br>and discussions<br>2 X 50 | Material: C/C<br>program<br>structure<br><b>References:</b><br>1. Deitel,<br>Paul, and<br>Deitel,<br>Harvey. 2012.<br>C How to<br>Program 7th<br>Edition.<br>United States<br>of America:<br>Pearson<br>Education,<br>Inc.                                                                                                                                                                                      | 5%                       |
| 4     | Students are able<br>to explain<br>variables, data<br>types, operators<br>and identifiers in a<br>C/C based program                                                        | <ol> <li>Accuracy in<br/>explaining<br/>variable<br/>definitions,<br/>data types,<br/>operators and<br/>identifiers</li> <li>Accuracy in<br/>indicating the<br/>use of<br/>variables,<br/>data types,<br/>operators, and<br/>identifiers</li> <li>Accuracy in<br/>implementing<br/>variables,<br/>data types,<br/>operators and<br/>identifiers in a<br/>program</li> </ol> | Criteria:<br>The maximum score<br>for each item is 25 if<br>answered correctly                              | Presentations,<br>lectures and<br>discussions<br>2 X 50                         | Presentations, lectures<br>and discussions<br>2 X 50 | Material:<br>Variables,<br>data types,<br>operators, and<br>identifiers<br>References:<br>1. Deitel,<br>Paul, and<br>Deitel,<br>Harvey. 2012.<br>C How to<br>Program 7th<br>Edition.<br>United States<br>of America:<br>Pearson<br>Education,<br>Inc.                                                                                                                                                           | 5%                       |

| 5 | Students are able<br>to analyze the<br>concept of<br>branching structure<br>in a C/C based (if -<br>else) program            | <ol> <li>Accuracy in<br/>explaining the<br/>concept of<br/>branching<br/>using if-else</li> <li>Accuracy in<br/>implementing<br/>branching<br/>structures<br/>using the if-<br/>else structure</li> </ol>   | Criteria:<br>The maximum score<br>for each item is 20 if<br>answered correctly                                   | Presentations,<br>lectures and<br>discussions<br>2 X 50 | Presentations, lectures<br>and discussions<br>2 X 50 | Material: If-<br>else<br>branching<br>structure<br><b>References:</b><br>1. Deitel,<br>Paul, and<br>Deitel,<br>Harvey. 2012.<br>C How to<br>Program 7th<br>Edition.<br>United States<br>of America:<br>Pearson<br>Education,<br>Inc.                      | 5%  |
|---|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 6 | Students are able<br>to explain<br>functions,<br>variables, data<br>types, constants<br>and operators used<br>in a program   | <ol> <li>Accuracy in<br/>explaining the<br/>concept of<br/>switch-case<br/>branching</li> <li>Accuracy in<br/>implementing<br/>branching<br/>structures<br/>using switch-<br/>case</li> </ol>               | Criteria:<br>Assessment rubric                                                                                   | Presentations,<br>lectures and<br>discussions<br>2 X 50 | Presentations, lectures<br>and discussions<br>2 X 50 | Material:<br>Switch-case<br>branching<br>structure<br><b>References:</b><br>1. Deitel,<br>Paul, and<br>Deitel,<br>Harvey. 2012.<br>C How to<br>Program 7th<br>Edition.<br>United States<br>of America:<br>Pearson<br>Education,<br>Inc.                   | 5%  |
| 7 | Students are able<br>to analyze the<br>concept of loop<br>structure in a C/C<br>based program<br>(for, while, do-<br>while). | <ol> <li>Accuracy in<br/>explaining the<br/>concept of for<br/>loop</li> <li>Accuracy in<br/>implementing<br/>the for loop<br/>structure in<br/>programming</li> </ol>                                      | Criteria:<br>Assessment rubric                                                                                   | Presentations,<br>lectures and<br>discussions<br>2 X 50 | Presentations, lectures<br>and discussions<br>2 X 50 | Material: The<br>concept of<br>loop structure<br>for<br><b>References:</b><br>1. Deitel,<br>Paul, and<br>Deitel,<br>Harvey. 2012.<br>C How to<br>Program 7th<br>Edition.<br>United States<br>of America:<br>Pearson<br>Education,<br>Inc.                 | 5%  |
| 8 | MIDDLE<br>SEMESTER<br>EXAMINATION /<br>MID SEMESTER<br>EXAMINATION                                                           | Accuracy in<br>completing the<br>questions<br>provided in the<br>time provided                                                                                                                              | Criteria:<br>Each question item<br>has an assessment<br>weight adjusted to the<br>student's ability to<br>answer | MID<br>SEMESTER<br>EXAMINATION<br>2 X 50                | MID SEMESTER<br>EXAMINATION<br>2 X 50                |                                                                                                                                                                                                                                                           | 20% |
| 9 | Students are able<br>to explain the<br>concept of<br>branching and<br>while and do-while<br>loops in a program               | <ol> <li>Accuracy in<br/>explaining the<br/>concept of<br/>while and do<br/>while loops</li> <li>Accuracy in<br/>implementing<br/>while and do-<br/>while loop<br/>structures in<br/>programming</li> </ol> | Criteria:<br>Assessment rubric<br>Form of Assessment :<br>Participatory Activities                               | Presentations,<br>lectures and<br>discussions<br>2 X 50 | Presentations, lectures<br>and discussions<br>2 X 50 | Material:<br>Concept of<br>while and do-<br>while loop<br>structures<br><b>References:</b><br>1. Deitel,<br>Paul, and<br>Deitel,<br>Harvey. 2012.<br>C How to<br>Program 7th<br>Edition.<br>United States<br>of America:<br>Pearson<br>Education,<br>Inc. | 0%  |

| 10 | Students are able<br>to analyze the<br>concept and<br>structure of a<br>function in a C/C<br>based program                                     | <ol> <li>Accuracy in<br/>explaining the<br/>concept of<br/>using<br/>functions in a<br/>program</li> <li>Accuracy in<br/>applying the<br/>use of<br/>functions in a<br/>program</li> <li>Accuracy in<br/>explaining the<br/>concept of<br/>using<br/>functions with<br/>input, output<br/>and input-<br/>output<br/>parameters</li> </ol> | Criteria:<br>Assessment rubric<br>Form of Assessment :<br>Participatory Activities | Presentations,<br>lectures and<br>discussions<br>2 X 50 | Presentations, lectures<br>and discussions<br>2 X 50 | Material:<br>Function<br>concepts,<br>functions with<br>return values,<br>functions<br>without return<br>values, and<br>functions with<br>parameters.<br><b>References:</b><br>1. Deitel,<br>Paul, and<br>Deitel,<br>Harvey. 2012.<br>C How to<br>Program 7th<br>Edition.<br>United States<br>of America:<br>Pearson<br>Education,<br>Inc. | 0% |
|----|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 11 | Students are able<br>to analyze the<br>concept and<br>implementation of<br>C/C-based array<br>data type<br>structures                          | <ol> <li>Accuracy in<br/>explaining the<br/>concept of<br/>arrays</li> <li>Accuracy in<br/>applying array<br/>data<br/>structures in a<br/>program</li> </ol>                                                                                                                                                                             | Criteria:<br>Assessment rubric                                                     | Presentations,<br>lectures and<br>discussions<br>2 X 50 | Presentations, lectures<br>and discussions<br>2 X 50 | Material:<br>Array concept<br>References:<br>1. Deitel,<br>Paul, and<br>Deitel,<br>Harvey. 2012.<br>C How to<br>Program 7th<br>Edition.<br>United States<br>of America:<br>Pearson<br>Education,<br>Inc.                                                                                                                                   | 5% |
| 12 | Students are able<br>to analyze the<br>concept and<br>implementation of<br>array data type<br>structures in C/C-<br>based matrix<br>operations | <ol> <li>Accuracy in<br/>explaining the<br/>concept of<br/>arrays</li> <li>Accuracy in<br/>applying array<br/>data<br/>structures in a<br/>program</li> </ol>                                                                                                                                                                             | Criteria:<br>Assessment rubric                                                     | Presentations,<br>lectures and<br>discussions<br>2 X 50 | Presentations, lectures<br>and discussions<br>2 X 50 | Material:<br>Array concept<br>References:<br>1. Deitel,<br>Paul, and<br>Deitel,<br>Harvey. 2012.<br>C How to<br>Program 7th<br>Edition.<br>United States<br>of America:<br>Pearson<br>Education,<br>Inc.                                                                                                                                   | 5% |
| 13 | Students are able<br>to analyze the<br>concepts and<br>implementation of<br>Object Oriented<br>Programming in<br>C/C                           | <ol> <li>Accuracy in<br/>explaining<br/>OOP<br/>concepts</li> <li>Accuracy in<br/>implementing<br/>object-based<br/>programming<br/>(OOP)<br/>methods</li> </ol>                                                                                                                                                                          | Criteria:<br>The maximum score<br>for each item is 20 if<br>answered correctly     | Presentations,<br>lectures and<br>discussions<br>2 X 50 | Presentations, lectures<br>and discussions<br>2 X 50 | Material:<br>Object<br>Oriented<br>Programming<br>(OOP)<br>References:<br>1. Deitel,<br>Paul, and<br>Deitel,<br>Harvey. 2012.<br>C How to<br>Program 7th<br>Edition.<br>United States<br>of America:<br>Pearson<br>Education,<br>Inc.                                                                                                      | 5% |
| 14 | Students are able<br>to analyze the<br>concepts and<br>implementation of<br>Object Oriented<br>Programming in<br>C/C                           | <ol> <li>Accuracy in<br/>explaining<br/>OOP<br/>concepts</li> <li>Accuracy in<br/>implementing<br/>object-based<br/>programming<br/>(OOP)<br/>methods</li> </ol>                                                                                                                                                                          | Criteria:<br>The maximum score<br>for each item is 20 if<br>answered correctly     | Presentations,<br>lectures and<br>discussions<br>2 X 50 | Presentations, lectures<br>and discussions<br>2 X 50 | Material:<br>Object<br>Oriented<br>Programming<br>(OOP)<br>References:<br>1. Deitel,<br>Paul, and<br>Deitel,<br>Harvey. 2012.<br>C How to<br>Program 7th<br>Edition.<br>United States<br>of America:<br>Pearson<br>Education,<br>Inc.                                                                                                      | 5% |

| 15 | Students are able<br>to analyze the<br>concept and<br>implementation of<br>library use in a<br>program | <ol> <li>Accuracy in<br/>explaining the<br/>library<br/>concept in a<br/>program</li> <li>Accuracy in<br/>compiling<br/>program<br/>libraries</li> </ol> | Criteria:<br>Assessment rubric | Presentations,<br>lectures and<br>discussions<br>2 X 50 | Presentations, lectures<br>and discussions<br>2 X 50 | Material:<br>Object<br>Oriented<br>Programming<br>References:<br>1. Deitel,<br>Paul, and<br>Deitel,<br>Harvey. 2012.<br>C How to<br>Program 7th<br>Edition.<br>United States<br>of America:<br>Pearson<br>Education,<br>Inc. | 5%  |
|----|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 16 | FINAL SEMESTER<br>EXAMINATION /<br>FINAL SEMESTER<br>EXAMINATION                                       |                                                                                                                                                          |                                | FINAL<br>EXAMINATION<br>OF<br>SEMESTER<br>2 X 50        |                                                      | Material:<br>Final<br>Semester<br>Exam<br>Literature: 1.<br>Deitel, Paul,<br>and Deitel,<br>Harvey. 2012.<br>C How to<br>Program 7th<br>Edition.<br>United States<br>of America:<br>Pearson<br>Education,<br>Inc.            | 30% |

Evaluation Percentage Recap: Project Based Learning

No Evaluation Percentage

Notes

- Learning Outcomes of Study Program Graduates (PLO Study Program) are the abilities possessed by each Study
  Program graduate which are the internalization of attitudes, mastery of knowledge and skills according to the level of their study
  program obtained through the learning process.
- 2. The PLO imposed on courses are several learning outcomes of study program graduates (CPL-Study Program) which are used for the formation/development of a course consisting of aspects of attitude, general skills, special skills and knowledge.
- 3. **Program Objectives (PO)** are abilities that are specifically described from the PLO assigned to a course, and are specific to the study material or learning materials for that course.
- 4. **Subject Sub-PO (Sub-PO)** is a capability that is specifically described from the PO that can be measured or observed and is the final ability that is planned at each learning stage, and is specific to the learning material of the course.
- 5. Indicators for assessing ability in the process and student learning outcomes are specific and measurable statements that identify the ability or performance of student learning outcomes accompanied by evidence.
- 6. Assessment Criteria are benchmarks used as a measure or measure of learning achievement in assessments based on predetermined indicators. Assessment criteria are guidelines for assessors so that assessments are consistent and unbiased. Criteria can be quantitative or qualitative.
- 7. Forms of assessment: test and non-test.
- 8. Forms of learning: Lecture, Response, Tutorial, Seminar or equivalent, Practicum, Studio Practice, Workshop Practice, Field Practice, Research, Community Service and/or other equivalent forms of learning.
- 9. Learning Methods: Small Group Discussion, Role-Play & Simulation, Discovery Learning, Self-Directed Learning, Cooperative Learning, Collaborative Learning, Contextual Learning, Project Based Learning, and other equivalent methods.
- 10. Learning materials are details or descriptions of study materials which can be presented in the form of several main points and sub-topics.
- 11. The assessment weight is the percentage of assessment of each sub-PO achievement whose size is proportional to the level of difficulty of achieving that sub-PO, and the total is 100%.
- 12. TM=Face to face, PT=Structured assignments, BM=Independent study.