

Universitas Negeri Surabaya Faculty of Engineering, Electrical Engineering Undergraduate Study Program

Document Code

SEMESTER LEARNING PLAN

ourses		COD	E	Course Family	0	Cred	it We	ight	SEMESTER	Compilation Date	
icroproces	sor and Microcont	roller 2020	103090	Compulsory Stud Program Subject		T=3	P=0	ECTS=4.77	4	January 19, 2024	
UTHORIZA	TION	SP D	eveloper		Course Cluster Coordinator Study Program Coord					n Coordinator	
		Sayy	Parama Diptya Widayaka, S.ST., M.T., Sayyidul Aulia Alamsyah, S.T., M.T., L. Endah Cahya Ningrum, S.Pd., M.Pd.			nban	g Sup	prianto, M.T.	Dr. Lusia Rakhmawati, S.T M.T.		
earning odel	Project Based Lo	earning	I								
rogram	PLO study program that is charged to the course										
earning utcomes	PLO-6	Able to desig	n system componer	nts and/or processes t	o be appl	lied i	n the	field of electri	cal engineering		
PLO)	PLO-7	Able to design and carry out experiments in the laboratory/field as well as analyze and interpret data to strengthen technical assessments									
	PLO-11	O-11 Able to plan, complete and evaluate tasks within the constraints that exist in the field of electrical engineering									
	Program Objectives (PO)										
	PO - 1	Students are able to explain the use of microcontrollers and the role of microcontrollers in electronic systems, automation systems and robotic systems									
	PO - 2	Students are able to apply knowledge in using ADC peripherals to solve certain problems									
	PO - 3	Students are able to apply knowledge in using Timer/Counter peripherals to solve certain problems									
	PO - 4	Students are able to apply knowledge in using Serial communication peripherals to solve certain problems									
	PO - 5	Students are able to apply knowledge in using I2C peripherals to solve certain problems									
	PO - 6	Students are able to design and realize a microcontroller-based automation system in solving problems									
	PO - 7 Students are able to design and realize a microcontroller-based automation system in solving problems										
	PLO-PO Matrix										
		P.C	PLO-6	PLO-7	Р	PLO-1	11	7			
		PO-	1					-			
		PO-						-			
		PO-						-			
		PO-						-			
		PO-						-			
		PO-	-					-			
		PO-						_			
		10-	1								
	PO Matrix at the	e end of eac	h learning stage (Sub-PO)							
			0 0 1	-							
	1										

		P.O								Wee	k						
			1 3	2 3	4	5	6	7	8	9	10	11	12	13	14	15	16
		PO-1															
		PO-2															
		PO-3															
		PO-4															
		PO-5															
		PO-6															
		PO-7															
Short Course Descript Reference	able to design r course explains functions or fac Communication ces Main : 1. Mazidi Prentic 2. Barret, Publish	Steven F., Pack, Dan	electron microc unter, In I, Naimi iel J. 20	ic device ealize a ontroller terrupt, r , Sepeh 008. Atm	es to s microo such etc. r. 201: nel AV	solve contro as C 1. The R Mic	autom oller-b Gener e AVR	ation d ased el al Purp Micrco troller	ocon Prim	troller er: Pr	and E	ems. Th microc ut (GPI	e Micr ontrolle O), Ar ed Sys	oproces er progr nalog-D stems u	ssor and ramming igital Co using As	Micro and onvert	ocontroller the use of er (ADC), ly and C.
	Supporters:																
	1. Datash	eet Mikrokontroler Atm	nel AVR	Family													
Support lecturer	Prof. Dr. I Gusti L. Endah Cahya Parama Diptya	ang Suprianto, M.T. Putu Asto Buditjahjan a Ningrum, S.Pd., M.P Widayaka, S.ST., M.T Alamsyah, S.T., M.T.	d.	, M.T.													
Week-	Final abilities of each learning stage (Sub-PO)			Evaluation				St	Leari uder [Es	ning r nt Ass stimat	arning nethoo signme ed tim	ds, ents, <mark>e]</mark>		Learning materials [References]			Assessment Weight (%)
	(5000)	Indicator		Criteria	a & Fo	orm		Offline offline		On	line (online)				
(1)	(2)	(3)		((4)			(5)			(6))		(7)		(8)

1	Students are able to explain the definition and workings of a microcontroller, microcontroller architecture, memory and registers contained in a microcontroller	 Able to explain the definition, differences, and working principles of microcontrollers Be able to explain the types of memory in microcontrollers Able to explain the definition of register 	Criteria: Assessment rubric Form of Assessment : Participatory Activities, Tests	Learning Model: 3 X 50 Lectures	Learning Model: 3 x 50 Lectures	Material: Definition, differences between microcontrollers, working principles of microcontrollers, memory and registers in microcontrollers Reference: Mazidi M. Ali, Naimi, Sepehr. 2011. The AVR Microcontroller and Embedded Systems using Assembly and C. Prentice Hall. Material: Definition, differences between microprocessors and microcontrollers, working principles of microcontrollers, working principles of microcontrollers References: Barret, Steven F., Pack, Daniel J. 2008. Atmel AVR Microcontroller Primer:	5%
2	Students are able to explain the meaning of a minimum system circuit, and how the clock works on a microcontroller	 Students are able to name and explain the components used in the minimum system Students are able to analyze how the clock works on a microcontroller 	Criteria: Analysis method (the process of giving grades based on analysis according to the answers provided based on the level of truth) Form of Assessment : Participatory Activities, Tests	Model: Lecture Method: 3 X 50 Discussion	Model: Lecture Method: 3 x 50 Discussion	Morgan and Claypool Publishers. Material: Minimum system and clock Reference: Mazidi M. Ali, Naimi, Sepehr. 2011. The AVR Microcontroller and Embedded Systems using Assembly and C. Prentice Hall. Material: Minimum system and clock Reference: Barret, Steven F., Pack, Daniel J. 2008. Atmel AVR Microcontroller Primer: Programming and Interfacing. Morgan and Claypool Publishers.	5%

3	Students are able to explain the definition of GPIO, how GPIO works and configure GPIO registers in accessing Input Output	 Students are able to explain the definition of GPIO Students are able to analyze how GPIO works Students are able to analyze the GPIO register configuration 	Criteria: Assessment rubric Form of Assessment : Participatory Activities, Tests	Model: Lecture Method: 3 X 50 Discussion	Model: Lecture Method: 3 X 50 Discussion	Material: General Purpose Input Output Bibliography: Mazidi M. Ali, Naimi, Sarmad, Naimi, Sepehr. 2011. The AVR Microcontroller and Embedded Systems using Assembly and C. Prentice Hall. Material: General Purpose Input Output References: Barret, Steven F., Pack, Daniel J. 2008. Atmel AVR Microcontroller Primer: Programming and Interfacing. Morgan and Claypool Publishers.	5%
4	Students are able to explain the definition of GPIO, how GPIO works and configure GPIO registers in accessing Input Output	 Students are able to design simulation circuits using GPIO Students are able to create programs using GPIO Students are able to analyze programs and simulation circuits in using GPIO 	Criteria: Assessment rubric Forms of Assessment : Participatory Activities, Practice/Performance, Tests	Model: Lecture Method: 3 X 50 Discussion	Model: Lecture Method: 3 X 50 Discussion	Material: GPIO Register Library: Atmel AVR Family Microcontroller Datasheet Material: General Purpose Input Output Bibliography: Mazidi M. Ali, Naimi, Sarmad, Naimi, Sepehr. 2011. The AVR Microcontroller and Embedded Systems using Assembly and C. Prentice Hall. Material: General Purpose Input Output References: Barret, Steven F., Pack, Daniel J. 2008. Atmel AVR Microcontroller Primer: Programming and Interfacing. Morgan and Claypool Publishers. Material: GPIO Register Library: Atmel AVR Family Microcontroller Patasheet	5%

5	Students are able to explain the definition of ADC, how ADC works, and ADC register configuration in accessing analog input signals	 Students are able to explain the definition and types of ADC Students are able to explain how ADC works Students are able to explain the ADC register configuration 	Criteria: Assessment rubric Form of Assessment : Participatory Activities, Tests	Model: Lecture Method: 3 X 50 Discussion	Model: Lecture Method: 3 X 50 Discussion	Material: Analog to Digital Converter (ADC) References: Mazidi M. Ali, Naimi, Sarmad, Naimi, Sepehr. 2011. The AVR Microcontroller and Embedded Systems using Assembly and C. Prentice Hall. Material: Analog to Digital Converter (ADC) References: Barret, Steven F., Pack, Daniel J. 2008. Atmel AVR Microcontroller Primer: Programming and Interfacing. Morgan and Claypool Publishers.	5%
6	Students are able to analyze ADC types, how ADCs work, and ADC register configurations in accessing analog input signals	 Students are able to design simulation circuits using ADC Students are able to create programs to access ADC Students are able to display ADC data on the LCD 	Criteria: Assessment rubric Forms of Assessment : Participatory Activities, Practice/Performance, Tests	Model: Lecture Method: 3 X 50 Discussion	Model: Lecture Method: 3 X 50 Discussion	Material: Analog to Digital Converter (ADC) References: Mazidi M. Ali, Naimi, Sarmad, Naimi, Sepehr. 2011. The AVR Microcontroller and Embedded Systems using Assembly and C. Prentice Hall. Material: Analog to Digital Converter (ADC) References: Barret, Steven F., Pack, Daniel J. 2008. Atmel AVR Microcontroller Priogramming and Interfacing. Morgan and Claypool Publishers.	5%
7	Students are able to integrate the use of GPIO and ADC	 Students are able to design a program to turn on the LED based on the value produced by the potentiometer Students are able to analyze programs and how GPIO and ADC simulation circuits work 	Criteria: Analysis method (the process of giving grades based on the results of the analysis and presenting them in class) Forms of Assessment : Participatory Activities, Practice/Performance, Tests	Model: Case study 3 X 50	Model: Case study 3 X 50	Material: GPIO and ADC References: Mazidi M. Ali, Naimi, Sarmad, Naimi, Sepehr. 2011. The AVR Microcontroller and Embedded Systems using Assembly and C. Prentice Hall. Material: GPIO and ADC References: Barret, Steven F., Pack, Daniel J. 2008. Atmel AVR Microcontroller Primer: Programming and Interfacing. Morgan and Claypool Publishers.	5%

8	MIDDLE SEMESTER EXAMINATION / MID SEMESTER EXAMINATION		Form of Assessment : Test	3 X 50			10%
9	Students are able to analyze the definition, workings, modes and configuration of Timer/Counter registers on microcontrollers	 Students are able to analyze how the Timer/Counter mode works Students are able to analyze the registers on the Timer/Counter 	Criteria: Analysis method (the process of giving grades based on the results of the analysis and presenting them in class) Form of Assessment : Participatory Activities	Model: Lecture Method: 3 X 50 Discussion	Model: Lecture Method: 3 X 50 Discussion	Material: Timer/Counter Bibliography: Mazidi M. Ali, Naimi, Sarmad, Naimi, Sepehr. 2011. The AVR Microcontroller and Embedded Systems using Assembly and C. Prentice Hall. Material: Timer/Counter Bibliography: Barret, Steven F., Pack, Daniel J. 2008. Atmel AVR Microcontroller Primer: Programming and Interfacing. Morgan and Claypool Publishers.	5%
10	Students are able to apply Timer/Counter to a microcontroller to make a timer or digital clock	 Students are able to design digital clock application programs using a Timer/Counter Students are able to design a digital clock application simulation circuit using a Timer/Counter Students are able to analyze programs and series of digital clock applications using Timers/Counters 	Criteria: Assessment rubric Form of Assessment : Participatory Activities, Practice/Performance	Model: Project based learning 3 X 50	Model: Project based learning	Material: Timer/Counter Bibliography: Mazidi M. Ali, Naimi, Sarmad, Naimi, Sepehr. 2011. The AVR Microcontroller and Embedded Systems using Assembly and C. Prentice Hall. Material: Timer/Counter Bibliography: Barret, Steven F., Pack, Daniel J. 2008. Atmel AVR Microcontroller Primer: Programming and Interfacing. Morgan and Claypool Publishers.	10%
11	Students are able to apply a Timer/Counter on a microcontroller to access PWM as a motor rotation speed controller	 Students are able to design PWM programs using Timers/Counters Students are able to design a simulation circuit for controlling the speed and direction of a DC motor using a timer/counter Students are able to analyze programs and circuits for controlling the speed and direction of a DC motor using a timer/counter 	Criteria: Assessment rubric Form of Assessment : Participatory Activities, Practice/Performance	Model: Project based learning 3 X 50	Model: Project based learning	Material: Timer/Counter Bibliography: Mazidi M. Ali, Naimi, Sarmad, Naimi, Sepehr. 2011. The AVR Microcontroller and Embedded Systems using Assembly and C. Prentice Hall. Material: Timer/Counter Bibliography: Barret, Steven F., Pack, Daniel J. 2008. Atmel AVR Microcontroller Primer: Programming and Interfacing. Morgan and Claypool Publishers.	10%

12	Students are able to analyze the workings and configuration of serial communication registers (USART) on microcontrollers	 Students are able to explain how USART serial communication works on a microcontroller Students are able to analyze the USART serial communication register configuration on the microcontroller 	Criteria: Assessment rubric Form of Assessment : Participatory Activities, Tests	Model: Lecture Method: 3 X 50 Discussion	Model: Lecture Method: 3 X 50 Discussion	Material: USART serial communication Bibliography: Mazidi M. Ali, Naimi, Sarmad, Naimi, Sepehr. 2011. The AVR Microcontroller and Embedded Systems using Assembly and C. Prentice Hall. Material: USART serial communication Bibliography: Barret, Steven F., Pack, Daniel J. 2008. Atmel AVR Microcontroller Primer: Programming and Interfacing. Morgan and Claypool Publishers.	5%
13	Students are able to apply serial communication (USART) in sending and receiving data on a microcontroller	 Students are able to design a USART serial communication simulation circuit on a microcontroller Students are able to design USART serial communication programs on microcontrollers 	Criteria: Assessment rubric Form of Assessment : Participatory Activities, Tests	Model: Project based learning Method: 3 X 50 discussion	Model: Project based learning Method: 3 X 50 discussion	Material: USART serial communication Bibliography: Mazidi M. Ali, Naimi, Sarmad, Naimi, Sepehr. 2011. The AVR Microcontroller and Embedded Systems using Assembly and C. Prentice Hall. Material: USART serial communication Bibliography: Barret, Steven F., Pack, Daniel J. 2008. Atmel AVR Microcontroller Primer: Programming and Interfacing. Morgan and Claypool Publishers.	5%
14	Students are able to analyze the workings and configuration of I2C registers on microcontrollers	 Students are able to explain how I2C works on a microcontroller Students are able to analyze the I2C register configuration on the microcontroller 	Criteria: Assessment rubric Form of Assessment : Participatory Activities, Tests	Model: Lecture Method: 3 X 50 Discussion	Model: Lecture Method: 3 X 50 Discussion	Material: 12C register configuration Reference: Mazidi M. Ali, Naimi, Sarmad, Naimi, Sepehr. 2011. The AVR Microcontroller and Embedded Systems using Assembly and C. Prentice Hall. Material: 12C register configuration Reference: Barret, Steven F., Pack, Daniel J. 2008. Atmel AVR Microcontroller Primer: Programming and Interfacing. Morgan and Claypool Publishers.	5%

15	Students are able to apply the use of I2C peripherals to microcontrollers	 Students are able to design a simulation circuit for using I2C on a microcontroller Students are able to design programs using I2C on microcontrollers 	Criteria: Assessment rubric Form of Assessment : Participatory Activities, Tests	Model: Project based learning Method: 3 X 50 discussion	Model: Project based learning Method: 3 X 50 discussion	Material: 12C register configuration Reference: Mazidi M. Ali, Naimi, Sarmad, Naimi, Sepehr. 2011. The AVR Microcontroller and Embedded Systems using Assembly and C. Prentice Hall. Material: 12C register configuration Reference: Barret, Steven F., Pack, Daniel J. 2008. Atmel AVR Microcontroller Primer: Programming and Interfacing. Morgan and Claypool Publishers.	5%
16	FINAL SEMESTER EXAMINATION / FINAL SEMESTER EXAMINATION		Form of Assessment : Test	3 X 50			9%

Evaluation Percentage Recap: Project Based Learning

No	Evaluation	Percentage
INU		0
1.	Participatory Activities	40.01%
2.	Practice / Performance	15.01%
3.	Test	44.01%
		99.03%

Notes

- Learning Outcomes of Study Program Graduates (PLO Study Program) are the abilities possessed by each Study
 Program graduate which are the internalization of attitudes, mastery of knowledge and skills according to the level of their study
 program obtained through the learning process.
- 2. The PLO imposed on courses are several learning outcomes of study program graduates (CPL-Study Program) which are used for the formation/development of a course consisting of aspects of attitude, general skills, special skills and knowledge.
- 3. **Program Objectives (PO)** are abilities that are specifically described from the PLO assigned to a course, and are specific to the study material or learning materials for that course.
- 4. **Subject Sub-PO (Sub-PO)** is a capability that is specifically described from the PO that can be measured or observed and is the final ability that is planned at each learning stage, and is specific to the learning material of the course.
- 5. **Indicators for assessing** ability in the process and student learning outcomes are specific and measurable statements that identify the ability or performance of student learning outcomes accompanied by evidence.
- 6. Assessment Criteria are benchmarks used as a measure or measure of learning achievement in assessments based on predetermined indicators. Assessment criteria are guidelines for assessors so that assessments are consistent and unbiased. Criteria can be quantitative or qualitative.
- 7. Forms of assessment: test and non-test.
- 8. Forms of learning: Lecture, Response, Tutorial, Seminar or equivalent, Practicum, Studio Practice, Workshop Practice, Field Practice, Research, Community Service and/or other equivalent forms of learning.
- 9. Learning Methods: Small Group Discussion, Role-Play & Simulation, Discovery Learning, Self-Directed Learning, Cooperative Learning, Collaborative Learning, Contextual Learning, Project Based Learning, and other equivalent methods.
- 10. Learning materials are details or descriptions of study materials which can be presented in the form of several main points and sub-topics.
- 11. The assessment weight is the percentage of assessment of each sub-PO achievement whose size is proportional to the level of difficulty of achieving that sub-PO, and the total is 100%.
- 12. TM=Face to face, PT=Structured assignments, BM=Independent study.