

Universitas Negeri Surabaya Faculty of Engineering, Electrical Engineering Undergraduate Study Program

Document Code

SEMESTER LEARNING PLAN

Courses				CODE	Course Family		ily		Cred	it We	ight	SEMES	TER	Compilation Date	
Medical I	Elect	ronics		2020102339				bry Study T=0 P=0 ECTS=0			į	5	April 24, 2023		
AUTHOR	RIZAT	ION		SP Develop	er			Course Cluster Coordinator				Study F	Program	Coordinator	
				Parama Diptya Widayaka, S.ST., M.T. Widodo, S.T., M.Sc. ; Dr. Lilik Anifah, S M.T.			.T. ; Arii h, S.T.,	T. ; Arif Prof. Dr. I Gusti Putu Asto B., S.T., M.T.			Dr. Lusia Rakhmawati, S.T., M.T.				
Learning model	I	Case Studies						•					•		
Program		PLO study prog	gram w	/hich is char	ged to the c	ourse									
Learning Outcom		Program Objectives (PO)													
(PLO)		PO - 1 Able to apply knowledge of mathematics and medical electronics to gain a thorough understanding of engineering principles.													
		PLO-PO Matrix													
		P.O PO-1													
		PO Matrix at th	e end o	of each learr	ing stage (Sub-PO)									
				P.0					-	Wee					
				1	1 2 3	4 :	5 6	7	8	9	10	11 1	2 13	14	15 16
			PO	-1											
Short Course Descript	tion	Understand elect equipment which													als in medical
Referen	ces	Main :													
				I. Norris. 2005 2000. Biomed									n. Canada	a: John V	Viley & Sons.
		Supporters:													
		1. Northrop Press.	, R. B.	2004. Analys	is and Applic	ation of <i>i</i>	Analog	Electro	onic (Circui	s to I	Biomedica	I Instrum	entation.	Florida: CRC
Support lecturer	ing	Dr. Lilik Anifah, S Arif Widodo, S.T. Parama Diptya W	M.Sc.												
Week-		al abilities of h learning ge		Evaluation				Help Learning, Learning methods, Student Assignments, [Estimated time]			materials Wei		Assessment Weight (%)		
		b-PO)	I	ndicator	Criteria	& ⊢orm		ffline (ffline)		On	line (online)	[Refer	ences]	weight (%)
(1)		(2)		(3)	(4	.)		(5)			(6)	(7)	(8)

1	Can explain the concept of medical electronics and also explain the sensors used in medical electronics	Explains the concept of medical electronics and also explains the sensors used in medical electronics	Criteria: Evaluation Rubric Form of Assessment : Participatory Activities	Model: Cooperative learning Method: Discussion Scientific Approach: - Observing Listening to the lecturer's explanation about medical electronics and sensors used - Asking questions Discussing solutions to problems - Exploring Making observation reports on medical electronics and sensors used - Associating Analyzing observation results - Communicating Discussing results observation. 3 X 50	Material: Meeting material 1 References: Prutchi, D and M. Norris. 2005. Design and Development of Medical Electronic Instrumentation. Canada: John Wiley & Sons.	5%
2	Can explain the basic structure of sensors used in electromedicine. Can explain the sensing components of sensors used in devices.	Explain the basic structure of sensors used in electromedicine. Explain the sensing components of sensors used in devices.	Criteria: Evaluation Rubric	Model: Cooperative learning Method: Discussion Scientific Approach: - Observing Listening to the lecturer's explanation regarding the basic structure of sensors and sensing components - Asking questions Discussing solutions to problems - Exploring Making observation reparts regarding the basic structure of sensors and sensing components - Associating Analyzing observation results - Communicating Discussing observation results. 3 X 50	Material: Meeting material 2 References: Prutchi, D and M. Norris. 2005. Design and Development of Medical Electronic Instrumentation. Canada: John Wiley & Sons.	5%

3	Can explain the basic structure of sensors used in electromedicine. Can explain the sensing components of sensors used in devices.	Explain the basic structure of sensors used in electromedicine. Explain the sensing components of sensors used in devices.	Criteria: Evaluation Rubric Form of Assessment : Participatory Activities	Model: Cooperative learning Method: Discussion Scientific Approach: - Observing Listening to the lecturer's explanation regarding the basic structure of sensors and sensing components - Asking questions Discussing solutions to problems -	Material: Meeting material 3 References: Tompkins, WJ 2000. Biomedical Digital Signal Processing. New Jersey: Prentice Hall.	5%
				Exploring Making observation reports regarding the basic structure of sensors and sensing components - Associating Analyzing observation results - Communicating Discussing observation results. 3 X 50		
4	Can explain how electrocardiography works and can design simple electronic circuits for ECG	Explain how electrocardiography works and design a simple electronic circuit for ECG	Criteria: Evaluation Rubric Form of Assessment : Participatory Activities	Model: Cooperative learning Method: Discussion and simulation Scientific Approach: - Observing Listening to the lecturer's explanation regarding the basic circuit of the ECG - Asking questions Discussing the solution to the problem - Exploring Making an observation report regarding the basic circuit of the ECG - Associating Simulating and analyzing the results of the observation - Communicating Discussing observation results. 3 X 50	Material: Meeting material 4 References: Prutchi, D and M. Norris. 2005. Design and Development of Medical Electronic Instrumentation. Canada: John Wiley & Sons.	5%

5	Can explain how electrocardiography works and can design simple electronic circuits for ECG	Explain how electrocardiography works and design a simple electronic circuit for ECG	Criteria: Evaluation Rubric	Model: Cooperative learning Method: Discussion and simulation Scientific Approach: - Observing Listening to the lecturer's explanation regarding the basic circuit of the ECG - Asking questions Discussing the solution to the problem - Exploring Making an observation regarding the basic circuit of the ECG - Associating Simulating and analyzing the results of the observation - Communicating Discussing observation results. 3 X 50	Material: Meeting 5 materials References: Northrop, RB 2004. Analysis and Application of Analog Electronic Circuits to Biomedical Instrumentation. Florida: CRC Press.	5%
6	Can explain how electrocardiography works and can design simple electronic circuits for ECG	Explain how electrocardiography works and design a simple electronic circuit for ECG	Form of Assessment : Participatory Activities	Model: Cooperative learning Method: Discussion and simulation Scientific Approach: - Observing Listening to the lecturer's explanation regarding the basic circuit of the ECG - Asking questions Discussing the solution to the problem - Exploring Making an observation report regarding the basic circuit of the ECG - Associating Simulating and analyzing the results of the observation - Communicating Discussing observation results. 3 X 50	Material: Meeting 6 materials References: Tompkins, WJ 2000. Biomedical Digital Signal Processing. New Jersey: Prentice Hall.	5%

7	Can explain how electrocardiography works and can design simple electronic circuits for ECG	Explain how electrocardiography works and design a simple electronic circuit for ECG	Form of Assessment : Participatory Activities	Model: Cooperative learning Method: Discussion and simulation Scientific Approach: - Observing Listening to the lecturer's explanation regarding the basic circuit of the ECG - Asking questions Discussing the solution to the problem - Exploring Making an observation report regarding the basic circuit of the ECG - Associating Simulating and analyzing the results of the observation - Communicating Discussing observation results. 3 X 50	Material: Meeting 6 materials References: Tompkins, WJ 2000. Biomedical Digital Signal Processing. New Jersey: Prentice Hall.	5%
8	Complete the Midterm Exam	Explain how electrocardiography works and design a simple electronic circuit for ECG	Form of Assessment : Participatory Activities	Model: Cooperative learning Method: Discussion and simulation Scientific Approach: - Observing Listening to the lecturer's explanation regarding the basic circuit of the ECG - Asking questions Discussing the solution to the problem - Exploring Making an observation report regarding the basic circuit of the ECG - Associating Simulating and analyzing the results of the observation - Communicating Discussing observation results. 3 X 50	Material: Meeting 6 materials References: Tompkins, WJ 2000. Biomedical Digital Signal Processing. New Jersey: Prentice Hall.	5%

9	Can explain how electrocardiography works and can design simple electronic circuits for ECG	Explain how electrocardiography works and design a simple electronic circuit for ECG	Form of Assessment : Participatory Activities	Model: Cooperative learning Method: Discussion and simulation Scientific Approach: - Observing Listening to the lecturer's explanation regarding the basic circuit of the ECG - Asking questions Discussing the solution to the problem - Exploring Making an observation regarding the basic circuit of the ECG - Associating Simulating and analyzing the results of the observation - Communicating Discussing observation results. 3 X 50	Material: Meeting 6 materials References: Tompkins, WJ 2000. Biomedical Digital Signal Processing. New Jersey: Prentice Hall.	5%
10	Can explain how electrocardiography works and can design simple electronic circuits for ECG	Explain how electrocardiography works and design a simple electronic circuit for ECG	Form of Assessment : Participatory Activities	Model: Cooperative learning Method: Discussion and simulation Scientific Approach: - Observing Listening to the lecturer's explanation regarding the basic circuit of the ECG - Asking questions Discussing the solution to the problem - Exploring Making an observation regarding the basic circuit of the ECG - Associating Simulating and analyzing the results of the observation - Communicating Discussing observation results. 3 X 50	Material: Meeting 6 materials References: Tompkins, WJ 2000. Biomedical Digital Signal Processing. New Jersey: Prentice Hall.	5%

	Can explain how electrocardiography works and can design simple electronic circuits for ECG	Explain how electrocardiography works and design a simple electronic circuit for ECG	Form of Assessment : Participatory Activities	Model: Cooperative learning Method: Discussion and simulation Scientific Approach: - Observing Listening to the lecturer's explanation regarding the basic circuit of the ECG - Asking questions Discussing the solution to the problem - Exploring Making an observation report regarding the basic circuit of the ECG - Associating Simulating and analyzing the results of the observation - Communicating Discussing observation results. 3 X 50	Material: Meeting 6 materials References: Tompkins, WJ 2000. Biomedical Digital Signal Processing. New Jersey: Prentice Hall.	5%
12	Can explain how electrocardiography works and can design simple electronic circuits for ECG	Explain how electrocardiography works and design a simple electronic circuit for ECG	Form of Assessment : Participatory Activities	Model: Cooperative learning Method: Discussion and simulation Scientific Approach: - Observing Listening to the lecturer's explanation regarding the basic circuit of the ECG - Asking questions Discussing the solution to the problem - Exploring Making an observation report regarding the basic circuit of the ECG - Associating Simulating and analyzing the observation - Communicating Discussing observation results. 3 X 50	Material: Meeting 6 materials References: Tompkins, WJ 2000. Biomedical Digital Signal Processing. New Jersey: Prentice Hall.	5%

13	Can explain how electrocardiography works and can design simple electronic circuits for ECG	Explain how electrocardiography works and design a simple electronic circuit for ECG	Form of Assessment : Participatory Activities	Model: Cooperative learning Method: Discussion and simulation Scientific Approach: - Observing Listening to the lecturer's explanation regarding the basic circuit of the ECG - Asking questions Discussing the solution to the problem - Exploring Making an observation regarding the basic circuit of the ECG - Associating Simulating and analyzing the results of the observation - Communicating Discussing observation results. 3 X 50	Material: Meeting 6 materials References: Tompkins, WJ 2000. Biomedical Digital Signal Processing. New Jersey: Prentice Hall.	5%
14	Can explain how electrocardiography works and can design simple electronic circuits for ECG	Explain how electrocardiography works and design a simple electronic circuit for ECG	Form of Assessment : Participatory Activities	Model: Cooperative learning Method: Discussion and simulation Scientific Approach: - Observing Listening to the lecturer's explanation regarding the basic circuit of the ECG - Asking questions Discussing the solution to the problem - Exploring Making an observation report regarding the basic circuit of the ECG - Associating Simulating and analyzing the results of the observation - Communicating Discussing observation results. 3 X 50	Material: Meeting 6 materials References: Tompkins, WJ 2000. Biomedical Digital Signal Processing. New Jersey: Prentice Hall.	5%

15	Can explain how electrocardiography works and can design simple electronic circuits for ECG	Explain how electrocardiography works and design a simple electronic circuit for ECG	Form of Assessment : Participatory Activities	Model: Cooperative learning Method: Discussion and simulation Scientific Approach: - Observing Listening to the lecturer's explanation regarding the basic circuit of the ECG - Asking questions Discussing the solution to the problem - Exploring Making an observation report regarding the basic circuit of the ECG - Associating Simulating and analyzing the results of the observation - Communicating Discussing observation results. 3 X 50	Material: Meeting 6 materials References: Tompkins, WJ 2000. Biomedical Digital Signal Processing. New Jersey: Prentice Hall.	5%
16	Solving UAS questions	Explain how electrocardiography works and design a simple electronic circuit for ECG	Form of Assessment : Participatory Activities	Model: Cooperative learning Method: Discussion and simulation Scientific Approach: - Observing Listening to the lecturer's explanation regarding the basic circuit of the ECG - Asking questions Discussing the solution to the problem - Exploring Making an observation report regarding the basic circuit of the ECG - Associating Simulating and analyzing the results of the observation - Communicating Discussing observation results. 3 X 50	Material: Meeting 6 materials References: Tompkins, WJ 2000. Biomedical Digital Signal Processing. New Jersey: Prentice Hall.	10%

Evaluation Percentage Recap: Case Study

No	Evaluation	Percentage	
1.	Participatory Activities	75%	
		75%	

Learning Outcomes of Study Program Graduates (PLO - Study Program) are the abilities possessed by each Study Program graduate which are the internalization of attitudes, mastery of knowledge and skills according to the level of their study program obtained through the learning process.

- 2. The PLO imposed on courses are several learning outcomes of study program graduates (CPL-Study Program) which are used for the formation/development of a course consisting of aspects of attitude, general skills, special skills and knowledge.
- Program Objectives (PO) are abilities that are specifically described from the PLO assigned to a course, and are specific to the study material or learning materials for that course.
- 4. **Subject Sub-PO (Sub-PO)** is a capability that is specifically described from the PO that can be measured or observed and is the final ability that is planned at each learning stage, and is specific to the learning material of the course.
- 5. **Indicators for assessing** ability in the process and student learning outcomes are specific and measurable statements that identify the ability or performance of student learning outcomes accompanied by evidence.
- 6. Assessment Criteria are benchmarks used as a measure or measure of learning achievement in assessments based on predetermined indicators. Assessment criteria are guidelines for assessors so that assessments are consistent and unbiased. Criteria can be quantitative or qualitative.
- 7. Forms of assessment: test and non-test.
- 8. Forms of learning: Lecture, Response, Tutorial, Seminar or equivalent, Practicum, Studio Practice, Workshop Practice, Field Practice, Research, Community Service and/or other equivalent forms of learning.
- 9. Learning Methods: Small Group Discussion, Role-Play & Simulation, Discovery Learning, Self-Directed Learning,
- Cooperative Learning, Collaborative Learning, Contextual Learning, Project Based Learning, and other equivalent methods. 10. Learning materials are details or descriptions of study materials which can be presented in the form of several main points and sub-topics.
- 11. The assessment weight is the percentage of assessment of each sub-PO achievement whose size is proportional to the level of difficulty of achieving that sub-PO, and the total is 100%.
- 12. TM=Face to face, PT=Structured assignments, BM=Independent study.