

Universitas Negeri Surabaya Faculty of Engineering, Electrical Engineering Undergraduate Study Program

Document Code

SEMESTER LEARNING PLAN

Courses		CODE			Course Family			у	Credit Weight		SEMEST	ER	Con	pilation		
Electromagne	etic Field		2020103080				Compulsory Study			T=3	T=3 P=0 ECTS=4.77			L	-	10, 2023
					Pro	gram	Súbje		e Clus	ter Co	oordinator	Study P	rogram (Coordi	inator	
		Dr. Puput Wanarti Rusimamt Joko, M.Pd. MT.		to., Prof. Dr. Dr. Pu ST.,M		Puput Wanarti Rusimamto., MT;		Dr. Lusia Rakhmawati, S.T., M.T.								
Learning model	Case Studies															
Program	PLO study prog	gram t	hat is charg	ed to the	e cour	'se										
Learning Outcomes (PLO)	PLO-5		derstanding of the principles of electrical engineering													
(1 20)	PLO-8	Able t field	o apply engine	eering pri	nciples	s, ider	ntify, f	ormul	ate and	analyz	e dat	a/informatior	to solve p	oblems i	n the e	electrical
	Program Objec	tives (PO)													
	PO - 1		o apply engin omagnetic field		inciple	s, ide	ntify,	formu	ulate an	d analy	/ze da	ata/informatio	on to solve	problem	s in th	e field of
	PO - 2	Able to	o convey idea	s and inn	ovatior	n resu	lts in	the fie	eld of ele	ectrom	agnet	ic fields effe	tively both	orally an	d in wr	riting
	PO - 3	Able to	o plan, comple	ete and e	valuate	e task	s relat	ed to	electro	magnet	tic fiel	ds				
	PLO-PO Matrix	-														
			P.O PLO-5 PLO-8													
			PO-1													
			PO-2													
			PO-3													
	PO Matrix at th	e end	of each lear	ning sta	ge (Sı	ub-PC	D)									
			P.O Week													
				1 2	3	4	5	6	7	8 9	9 :	10 11	12 13	14	15	16
		PO)-1													
		PO)-2													
		PO	9-3													
			÷	•		•			• •	•	÷	!	•	• •	•	
Short Course Description	Students can dis divergence, dedu and torque, induc as well as explori	ce ener tance a	rgy and poten and magnetic	tial, cateo circuits, i	jorize c EMF, m	condu nagne	ctors tic eff	and c ects t	apacita hat cha	nce, cla nge ov	assify er tim	ampere law e, Maxwell's	and magne equations,	tic fields electron	, magn nagnet	netic force
References	Main :															
	1. Hayt, En	gineerir	ng Electromag	net , fifth	Editior	n, terj	emah	an ole	eh The H	louw L	iong ((ITB), MacGr	arw- Hill, 1	981		
	 Seri Buki Liang Ch 	u Schau i Shen,	um, Elektroma Jin An Kong Electromagne	gnetika . Aplikasi	I.D. Kra Elektro	aus. 1 omag	.984. netik ,	edisi	i 3, Pene	erbit Er	langg					
	Supporters:															
	HF Radia	ation Ef	and Sergey V fects, . With P heory and Co	ress											asical	Theory in

Support lecturer	Dr. Ir. Achmad Im Dr. Puput Wanart	am Agung, M.Pd. i Rusimamto, S.T., M.T Iapsari Peni Agustin Tj		1.Т.			
Week-	Final abilities of each learning stage	Evalu	ation	Lear Studer	Ip Learning, ning methods, nt Assignments, timated time]	Learning materials [References]	Assessment Weight (%)
	(Sub-PO)	Indicator	Criteria & Form	Offline(offline)	Online (<i>online</i>)	[noise is a set of the set of th	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
1	Students are able to explain the historical background and applications of electromagnetics	1.Explain the historical background 2.Explain electromagnetic applications in wireless technology, transmission line design and electromagnetic testing.	Criteria: Evaluation Rubric Form of Assessment : Participatory Activities, Portfolio Assessment	Presentations, discussions, reflections and assignments 3 X 50			4%
2	Students are able to understand the use of Cartesian coordinates, cylindrical coordinates and spherical coordinates in solving electromagnetic field problems.	 Explain vector notation Explain vector algebra Explain coordinate systems Explain the differential volume and surface elements and lines 	Criteria: Evaluation Rubric Form of Assessment : Participatory Activities, Portfolio Assessment	Presentation, discussion, reflection and assignment 3 X 50		Material: Meeting material 2 References: Schaum Book Series, JD Kraus Electromagnetics. 1984.	4%
3	Students are able to explain theories regarding static electric fields and the application of Coulomb's and Gauss's Laws	 Understand Coulomb's law Find the electric field strength Explain point charge fields Explain the line charge field Explain the plane charge field Explain the volume charge field 	Criteria: Evaluation Rubric Form of Assessment : Participatory Activities, Portfolio Assessment		Group assignments, group discussions, and 3 X 50 presentations	Material: Meeting material 3 Bibliography: Hayt, Engineering Electromagnet, fifth Edition, translation by The Houw Liong (ITB), MacGrarw- Hill, 1981	4%
4	Students are able to explain electric flux density	1. Explaining Electric Flux 2. Explaining Electrical Flux Density Vectors 3. Explain Gauss's Law 4. Explaining the Divergence Theorem	Criteria: Evaluation Rubric Form of Assessment : Participatory Activities, Portfolio Assessment		Group discussion, group presentation, and reflection 3 X 50	Material: Meeting material 4 References: Schaum Book Series, JD Kraus Electromagnetics. 1984.	4%
5	Students are able to understand energy and electrical potential	 Explain the energy required to move an electric charge in an electric field Explain line integrals Explain potential differences Explain the potential field of electric charges Explain the potential field of a charge system 	Criteria: Evaluation Rubric Form of Assessment : Participatory Activities, Portfolio Assessment		Tracing sources of information, group discussions, and concluding the results of 3 X 50 group discussions	Material: Meeting material 5 Bibliography: Krauss John E., Electromagnetics, McGraww-Hill Book Co. third Edition, 1999	4%

6	Students are able to understand conductors, dielectrics and capacitance	 Explain Current and Current Density Explaining Conductors and Conductivity Explain semiconductors Explain the properties of dielectric materials Explain capacitance 	Criteria: Evaluation Rubric Form of Assessment : Participatory Activities, Portfolio Assessment	Group discussions, group presentations, and reflection 3 X 50	Material: Meeting material 6 Bibliography: Krauss John E., Electromagnetics, McGraww-Hill Book Co. third Edition, 1999	4%
7	Students are able to understand conductors, dielectrics and capacitance	 Explain Current and Current Density Explaining Conductors and Conductivity Explain semiconductors Explain the properties of dielectric materials Explain capacitance 	Criteria: Evaluation Rubric Form of Assessment : Participatory Activities, Portfolio Assessment	Presentations, discussions and reflections as well as 3 X 50 group presentations	Material: Meeting material 7 References: Liang Chi Shen, Jin An Kong, Electromagnetic Applications, 3rd edition, Erlangga Publisher, Jakarta, 1995	4%
8	Carrying out UTS Meetings 1 to 7	Meetings 1 to 7	Criteria: Evaluation Rubric Form of Assessment : Test	Written Test 3 X 50	Material: Meeting material 1-7 References: Hayt, Engineering Electromagnet, fifth Edition, translation by The Houw Liong (ITB), MacGrarw- Hill, 1981	15%
9	Students are able to explain theories regarding static magnetic fields and the application of Biot-Savart and Ampere's Laws	 Explain Biot Savart's law Explain Ampere's integral law Explain Stoke's theorem Explain Stoke's theorem Explain flux and magnetic flux density Explain scalar potential and magnetic vector potential Explain the law of steady magnetic fields 	Criteria: Evaluation Rubric Form of Assessment : Participatory Activities	Presentation, discussion and reflection 3 X 50	Material: Meeting material 9 Reader: Farhad Rachidi and Sergey V Tkachenko,. 2008. Electromagnetic Field Interaction with Transmission lines from Casical Theory in HF Radiation Effects, . With Press	4%
10	Students are able to explain theories regarding static magnetic fields and the application of Biot-Savart and Ampere's Laws	 Explain Biot Savart's law Explain Ampere's integral law Explain Stoke's theorem Explain magnetic flux and magnetic flux density Explain scalar potential and magnetic vector potential Explain the law of steady magnetic fields 	Criteria: Evaluation Rubric Form of Assessment : Participatory Activities	Presentation, discussion and reflection 3 X 50	Material: Meeting material 10 References: Jian-Ming Jin, Theory and Computation of Electromagnetic Fields, 2nd Ed. IEEE Press, John Wiley and Son, 2015	4%

11	Students are able to explain force and torque in a magnetic field	 Explain the magnetic force on particles. Explain the combination of electric fields and magnetic fields Explain the magnetic force on a current element Explain thork and power Explain torque Explain the magnetic moment of a plane coil 	Criteria: Evaluation Rubric Form of Assessment : Participatory Activities		Discussion, presentation and reflection 3 X 50	Material: Meeting material 11 Bibliography: Schaum Book Series, JD Kraus Electromagnetics. 1984.	4%
12	Students are able to explain force and torque in a magnetic field	 Explain the magnetic force on particles. Explain the combination of electric fields and magnetic fields Explain the magnetic force on a current element Explain work and power Explain torque Explain the magnetic moment of a plane coil 	Criteria: Evaluation Rubric Form of Assessment : Participatory Activities, Portfolio Assessment	Presentation, discussion and reflection 3 X 50		Material: Meeting material 12 Reader: Farhad Rachidi and Sergey V Tkachenko,. 2008. Electromagnetic Field Interaction with Transmission lines from Casical Theory in HF Radiation Effects, . With Press	4%
13	Students are able to explain inductance and magnetic circuits	 Explain self- induction voltage Explain inductors and inductance Explain magnetic circuits Describes a terrace with an air gap Explaining double coils Explain parallel magnetic circuits 	Criteria: Evaluation Rubric Form of Assessment : Participatory Activities, Portfolio Assessment		Group discussions, presentations, discussions and reflections (independent learning) 3 X 50	Material: Meeting material 13 References: Liang Chi Shen, Jin An Kong, Electromagnetic Applications, 3rd edition, Erlangga Publisher, Jakarta, 1995	4%
14	Students are able to explain displacement currents and induced electromotive forces	 Explain displacement flow Explain Faraday's law Describes a conductor that moves in a field that is independent of time Describes a conductor that moves in a changing field 	Criteria: Evaluation Rubric Form of Assessment : Participatory Activities		Group discussion, presentation and reflection (independent study) 3 X 50	Material: Meeting material 14 References: Jian-Ming Jin, Theory and Computation of Electromagnetic Fields, 2nd Ed. IEEE Press, John Wiley and Son, 2015	4%

15	Students are able to explain the theories of electromagnetic waves and solve cases	 Explaining the Wave Equation and its Solution in Rectangular Coordinates Explaining Wave Propagation in various Media Explaining Interface Field Conditions for Normal Collisions Explaining Oblique Collisions and Snell's Law 	Criteria: Evaluation Rubric Form of Assessment : Participatory Activities, Tests	Presentation, discussion and reflection 3 X 50	Material: Meeting material 15 References: Hayt, Engineering Electromagnet, fifth Edition, translation by The Houw Liong (ITB), MacGrarw- Hill, 1981	3%
16	Meetings 9 to 15	Meetings 9 to 15	Criteria: Evaluation Rubric Form of Assessment : Participatory Activities, Tests	Written test 3 X 50		30%

Evaluation Percentage Recap: Case Study

No	Evaluation	Percentage
1.	Participatory Activities	50.5%
2.	Portfolio Assessment	18%
3.	Test	31.5%
		100%

Notes

- 1. Learning Outcomes of Study Program Graduates (PLO Study Program) are the abilities possessed by each Study Program graduate which are the internalization of attitudes, mastery of knowledge and skills according to the level of their study program obtained through the learning process.
- The PLO imposed on courses are several learning outcomes of study program graduates (CPL-Study Program) which are used for the formation/development of a course consisting of aspects of attitude, general skills, special skills and knowledge.
- 3. **Program Objectives (PO)** are abilities that are specifically described from the PLO assigned to a course, and are specific to the study material or learning materials for that course.
- Subject Sub-PO (Sub-PO) is a capability that is specifically described from the PO that can be measured or observed and is the final ability that is planned at each learning stage, and is specific to the learning material of the course.
- 5. Indicators for assessing abilities in the process and student learning outcomes are specific and measurable statements that identify the abilities or performance of student learning outcomes accompanied by evidence.
- 6. Assessment Criteria are benchmarks used as a measure or measure of learning achievement in assessments based on predetermined indicators. Assessment criteria are guidelines for assessors so that assessments are consistent and unbiased. Criteria can be quantitative or qualitative.
- 7. Forms of assessment: test and non-test.

8. Forms of learning: Lecture, Response, Tutorial, Seminar or equivalent, Practicum, Studio Practice, Workshop Practice, Field Practice, Research, Community Service and/or other equivalent forms of learning.

- 9. Learning Methods: Small Group Discussion, Role-Play & Simulation, Discovery Learning, Self-Directed Learning, Cooperative Learning, Collaborative Learning, Contextual Learning, Project Based Learning, and other equivalent methods.
- 10. Learning materials are details or descriptions of study materials which can be presented in the form of several main points and sub-topics.
- 11. The assessment weight is the percentage of assessment of each sub-PO achievement whose size is proportional to the level of difficulty of achieving that sub-PO, and the total is 100%.
- 12. TM=Face to face, PT=Structured assignments, BM=Independent study.