UNESA

Universitas Negeri Surabaya Faculty of Engineering, Electrical Engineering Undergraduate Study Program

Document Code

	UNESA																			
					ç	SEME	STE	ER L	EARN	IINC	S PLA	N								
Cour	ses			CODE			Cou	Course Family			Cred	Credit Weight		SE	MESTER	2	Compil	ation Date	a	
Elect	trical Machin	es		2020102410			Cor	mpulsor	y Study Pr	ogram	Subjects	Τ=	2 P=0	ECTS=3.1	.8	5		August	7, 2023	
AUTI	HORIZATION	l		SP Developer						Co	ourse Clu	ster Co	ordinato	or	St	udy Prog	ram Coo	ordinato	r	
		Prof. Dr. Joko,	Prof. Dr. Joko, M.Pd. MT.				Prof. Dr. Joko, M.Pd. MT.					Dr. Lusia Rakhmawati, S.T., M.T.								
Lear	earning model Case Studies																			
Prog		PLO study prog	gram that	is charged to	the cou	irse														
Lear	ning comes	Program Objec	tives (PO)																	
(PLC))	PO - 1	understan	nprehensive ski ding, working pr ic motor slip.	lls rega nciples	rding DC and functi	genera ons; par	tors/mo ts and t	tors, gene heir functio	rators/ ns; wir	motors, b iding;ma	oth syr gnitude	nchronou ; charact	s and asyr eristics; loss	ichron es and	ous, 1 p d efficienc	hase/3 µ y, genera	phase, v ator volta	which inclu age regulat	ude: tion,
		PLO-PO Matrix																		
P.O PO-1 PO Matrix at the end of each learning stage (Sub-PO) Veek P.O Veek 1 2 3 4 5 6 7 8 9 10 11 12 13				13	14	15	16													
			PO-1																	1
	rt Course cription	This course provi phase motors, ind slip in induction n and electric moto	cluding: def notors. This	finition, working s course also pro	principle ovides s	es, parts a tudents w	ind funct ith exper	tions, wi rience, k	ndings, ba	sic qua	antities, ch	aracter	ristics, los	sses, efficier	ncy, in	cluding ge	enerator	voltage I	regulation	and
Refe	rences	Main :																		
 Stephen J. Chapman, 2012. Electric Machinary Fundamentals Fifth Edition. MCGraw-Hill: New York Joko, 2018. Mesin Arus Bolak Balik. University Press: Surabaya Joko, 2016. Mesin Arus Searah. University Press: Surabaya 																				
		Supporters:																		
				ment Sheet Gen ment Sheet Gen																
Sup lectu	porting Irer	Prof. Dr. Joko, M.	Pd., M.T.																	
Week	Final abilit learning st (Sub-PO)			Ev	aluatior		ia & For	rm	Help Learning, Learning methods, Student Assignments, [Estimated time] Offline (offline) Online (online)					Learning materials [References]		Assessm Weight (ient (%)			
(1)		(2)		(3)		Sinter	(4)		Unin	(5)			(6	online)	-		(7)		(8)	_
(-)		\- /		(9)			19			(*)		1		-,			 <i>)</i>		(3)	

1	Identify, compare and analyze sources of information to draw conclusions about the differences between DC generators and DC motors in terms of their meaning, working principles and functions	 Analyze and conclude the differences between generators and DC motors in terms of understanding Analyze and conclude the differences between generators and DC motors in terms of working principles Analyze and conclude the differences between generators and DC motors in terms of their functions Participative 	Criteria: 1. Accuracy of analyzing and concluding the differences between generators and DC motors in terms of understanding, max score 30 2. Accuracy of analyzing and concluding the differences between generators and DC motors in terms of working principles, max score 38 3. Accuracy of analyzing and concluding the differences between generators and DC motors in terms of their functions, max score 30 4. Participative, max score 2 Form of Assessment : Participatory Activities		Case Studies. Given everyday equipment problems, students explore information sources - digital books and discussions to identify, identify and analyze to conclude the differences between DC generators and DC motors in terms of their meaning, working principles and functions 100 minutes	Material: Definition, working principles and functions of direct current (DC) generators and direct current (DC) motors. Reference: Stephen J. Chapman, 2012. Electric Machine Fundamentals Fifth Edition. MCGraw-Hill: New York	3%
2	Identify, interpret, and analyze data and information to conclude the types and notation systems of DC generators and DC motors	 The process of carrying out identification Perform data analysis Make conclusions about types and notation systems Participative 	1.Accuracy of the identification process, max	Case studies. Given a generator and DC motor problem, students search for sources of information and identify the type of generator and DC motor notation directly in the laboratory in groups. 60 minutes	Case studies. Based on the data obtained from the identification of types and notation systems, students held discussions to analyze and conclude the types and notation systems of generators and DC motors. 40 minutes	Material: Types of DC generators and motors and their notations Reference: Joko, 2016. Direct Current Machines. University Press: Surabaya	3%
3	Identify, interpret data, and analyze data and information to conclude the differences/parts of DC generators and DC motors and their functions	 Participative Identification process and results Interpreting data Analysis results Detailed summary of the parts and their functions 	Criteria: 1. Participative, max score 2 2. Accuracy of identification process and results, max score 15 3. Accuracy of data interpretation, max score 15 4. Accuracy of analysis results, max score 15 5. Accuracy of detailed conclusions about parts and their functions, max score 15 6. Students can make details of the parts of a DC generator/motor and their respective functions. correctly, max score 38 Form of Assessment : Participatory Activities, Portfolio Assessment	Case studies. Identify and make detailed drawings of generator and DC motor parts in the 60 minute laboratory	Case studies. Students explore sources of information and discuss detailed pictures of the parts and functions of DC generators and motors, interpret data, analyze and conclude 40 minutes	Material: Parts of DC generators and DC motors and their functions Reference: Joko, 2016. Direct Current Machines. University Press: Surabaya	3%

4	Carry out calculations of quantities on DC generators and DC motors	 Calculates the voltage of DC generator (GDC) and DC motor (MDC) shunt, series, compound, and separate amplifier GDC Calculate GDC and MDC voltage losses of shunt, series, compound, and separate amplifier GDC Calculates the GDC and MDC gain currents of shunt, series, compound, and separate GDC amplifiers Calculates GDC and MDC load currents of shunt, series, compound, and separate amplifier GDC Calculates armature current of GDC and MDC of shunt, series, compound, and separate amplifier GDC Calculates armature durrent of Shunt, series, compound, and separate amplifier GDC Calculates of shunt, series, compound, and separate amplifier GDC Calculates rotation speed of shunt, series, and compound MDC and separate gain MDC 	GDC and MDC gain, series, compound and separate amplifier GDC, max score 10 4.Precise calculation of GDC and MDC load currents of shunt, series, compound and separate amplifier GDC, max score 10 5.Accuracy of armature current calculation of GDC and MDC of shunt, series, compound and separate amplifier GDC, max score 10 6.Accuracy of shunt GDC and MDC armature winding count, series, compound and separate amplifier GDC, max score 10 7.Speed count accuracy of shunt, series, compound and separate booster MDCs, max score 20 8.Accuracy of shunt, series, compound and separate gain score 20 8.Accuracy of shunt, series, compound and separate gain MDC voltage loss calculations, max score 18 9.Participative, max		Case studies. Students search for sources of information, read digital textbooks, hold discussions, and carry out calculations of quantities and present the results. 100 minutes	Material: Calculation of quantities in DC generators and DC motors Reference: Stephen J. Chapman, 2012. Electric Machine Fundamentals Fifth Edition. MCGraw-Hill: New York	3%
			MDC voltage loss calculations, max score 18				
5	Analyze and prove the characteristics of DC generators and DC motors	 Create an experimental design Craw a series of experiments Take measurements and enter the results in the data table Carry out data interpretation Accuracy of data analysis Make characteristic conclusions participative 	 Portiolio Assessment Criteria: Accuracy of experimental design, max score Sequence image accuracy, max score 15 Accuracy of measurement results and data tables, max score Accuracy of data interpretation, max score 15 Accuracy of data analysis, max score 15 Accuracy of data analysis, max score 15 Accuracy of data analysis, max score 15 Accuracy of characteristic conclusions, max score 23 Form of Assessment : Participatory Activities, Portfolio Assessment 	Case Studies. Students in groups carry out testing of GDC and MDC characteristics, by preparing experimental designs, tool and material requirements, drawing circuits, making data tables, and testing GDC and MDC characteristics, making and data tables. 50 minutes	Case study. From the data that has been obtained, students hold discussions to interpret the data, analyze the data and draw conclusions on the results of proving the characteristics of GDC and MDC 50 minutes	Material: Analyzing and proving the characteristics of DC generators Reference: Joko, 2016. Direct Current Machines. University Press: Surabaya	3%

and DC mot	losses and IDC generators tors, and DC oltage regulation	 Calculating losses on GDC and MDC Calculating efficiency on GDC and MDC Calculating voltage regulation on GDC Participative 	Criteria: 1.GDC and MDC loss calculation accuracy, max score 40 2.GDC and MDC efficiency calculation accuracy, max score 40 3.GDC and MDC voltage regulation calculation accuracy, max score 18 4.Participative, max score 2 Form of Assessment : Participatory Activities, Portfolio Assessment	50 minutes	Case studies. Students explore sources of information and conduct discussions to complete assessments of GDC and MDC losses and efficiency, and calculate 100 minute GDC voltage regulation	Material: Characteristics of DC generators and DC motors Reference: Joko, 2016. Direct Current Machines. University Press: Surabaya	3%
------------	---	--	---	------------	---	--	----

7	Able to solve actual	1.Activeness in exploring	Criteria:		Case studies. Given	Material: calculating losses	3%
	problems related to DC	sources of information,	1.Accuracy of		practice questions in the	and efficiency of DC	
1	generators and DC motors according to applicable	discussions and	identifying		form of actual problems,	generators and DC motors,	
1	provisions/regulations, and	presentations, max score 3	problems, max		students search for	and voltage regulation of	
1	present the results	2.Accuracy of information	score 20		relevant sources of	DC generators	
1		sources accessed, max	2.Accuracy of		information to discuss.	Reference: Slobodan N.	
1		score 20	information		Next, students solve actual problems and students	Vukosavic, 2013. Electrical Machines. Springer-Verlag:	
1		Accuracy of procedures for			complete and conduct	Macnines. Springer-verlag: New York	
1		solving problems, max	max score 20		discussions and present		
1		score 20	3.Accuracy of		the results and collect		
1		4.Correctness of the final	procedures for		portfolios.		
1		result of solving the	solving problems,		I		
		problem, max score 20	max score 20		Assignment 7. Electrical		
		5.Quality of content, video	4.Correctness of the		Machines		
		and duration of video	final result of		A. Instructions:		
		presentation sent by the link, max score 17	solving the problem, max		1. The score is listed for		
		link, max score 17	score 20		each question item		
			5.Quality of content,		2. MsWord answer file,		
			video, and		calculation using eguation		
			duration of		3. The score is maximum if		
			presentation video		answer accompanied by		
			sent by the link,		picture B. Question Items		
			max score 17		1. A DC generator, having		
			Activeness in		a load current of 30 A at a		
			exploring sources		terminal voltage of 110 V		
			of information,		with a load current of 30A		
1			discussions and		110 V requires mechanical		
			presentations,		energy of 4500		
			max score 3		Joules/second. Determine the efficiency of the		
			Form of Assessment :		generator (max score 10)		
1			Participatory Activities,		2. A DC Shunt generator		
1			Portfolio Assessment		supplies a current of 95A at		
1					a voltage of 220V.		
					Armature resistance 0.2 Ω ,		
1					shunt resistance 60 Ω. Iron		
1					and friction losses are 2000 W. Determine the		
1					generator efficiency (max		
1					score 10)		
					3. A 200V DC Sunt DC		
					shunt motor requires a		
					current of 7 when rotating		
					with zero load. The		
					armature resistance is 0.2		
					Ω and the shunt resistance		
					is 100 Ω. Calculate: (a) iron loss and friction		
1					loss (max score 5)		
1					(b) shaft power when the		
1					load current is 62 A		
1					assuming constant iron		
1					and friction losses (max		
1					score 5)		
					 A DC generator with no load voltage of 230 V and 		
					load voltage full 220 V.		
					Determine the voltage		
					regulation of the generator		
					(max score 20)		
1					5. A 4-pole DC generator		
1					with a wave-wound winding		
1					type has 51 slots, each slot		
1					contains 20 conductors. What voltage is produced		
					when rotated at 1500 RPM		
1					assuming a polar flux of		
1					0.7 mWb (max score 10)		
1					An open circuit DC		
1					Shunt generator has an		
1					induced voltage of 115 V. If the engine voltage at full		
1					load is 110 V, determine		
1					the load current if the		
1					resistance field winding 15		
1					Ω and armature resistance		
1					0.02 Ω. Ignore the		
1					armature reaction (max		
1					score 10) 7. A separate amplifier DC		
					generator rotated at 1200		
					RPM supplies a current of		
					200 A when the terminal		
					voltage is 110 V. What is		
					the magnitude of the		
1					current when the rotation decreases to 1000 RPM		
1					and the gain current		
1					decreases by 80%.		
1					Armature resistance is 0.04		
1					Ω and total brush loss is 2		
1					V. Ignore saturation and		
1					armature reaction (max		
1					score 20).		
1					8. An 8 pole DC generator has 500 conductors, flux		
1					has 500 conductors, flux per pole 0.05.		
1					(a) If the windings are		
1					connected lap-connected		
1					and rotated at 1200 RPM,		
1					what is the generator emf		
1					voltage (max score 5)		
1					(b) If the rotation speed is		
1					the same, the windings are		
1					wave-wound connected, what is the generator emf		
1					voltage (max score 5)		
1					100		
			1		1		

8	UTS: Able to solve daily problems related to DC generators and DC motors	 Participative Identify the problem Sequence and ways of solving problems The final result of solving the problem 	Criteria: 1.Participative, max score 8.5 2.Accuracy of identifying problems, score, max 31.5 3.Correct order and how to solve problems, max score 40 4.Accuracy of final problem solving results, max score 20 Form of Assessment : Participatory Activities, Tests	Doing UTS Problems A 4-pole DC generator has an armature winding consisting of 648 conductors connected in two parallel circuits. Flux per pole is 0.321.10°6 maxwell and armature rotation speed is 1500 rpm. Determine: the average voltage generated.	Case studies. 100	Material: GDC and MDC Reference: Slobodan N. Vukosavic, 2013. Electrical Machines. Springer-Verlag: New York	20%
9	Compare the meaning, working principles and functions of synchronous/asynchronous generators and synchronous/asynchronous motors	 Accuracy in analyzing and concluding the differences between synchronous generators, asynchronous motors, asynchronous motors, both for 1 phase and 3 phases in terms of understanding Accuracy in analyzing and concluding the differences between synchronous generators, asynchronous generators, asynchronous motors, both for 1 phase and 3 phases in terms of working principles Accuracy in analyzing and concluding the differences between synchronous generators, asynchronous generators, synchronous generators, asynchronous generators, asynchronous generators, asynchronous generators, asynchronous motors, both for 1 phase and 3 phases, in terms of function and notation 	 Criteria: Accuracy in analyzing and concluding the differences between synchronous generators, asynchronous motors, both for 1 phase and 3 phases in terms of understanding, max score 30 Accuracy in analyzing and concluding the differences between synchronous generators, asynchronous generators, asynchronous generators, asynchronous generators, asynchronous generators, asynchronous generators, asynchronous generators, asynchronous generators, asynchronous generators, asynchronous motors, both for 1 phase and 3 phases in terms of working principles, max score 40 Accuracy in analyzing and concluding the differences between synchronous generators, asynchronous generators, asynchronous generators, asynchronous motors, both for 1 phase and 3 phases in terms of function, max score 30 		Case study: Searching for sources of information, discussing, identifying, interpreting, analyzing and concluding the differences in understanding, working principles and functions of synchronous/asynchronous motors and collecting the results individually (Online). 100 minutes	Material: Differences in understanding, working principles and functions of synchronous generators, asynchronous motors and asynchronous motors and <i>consection and the synchronous motors</i> Reference: Stephen J. Chapman, 2012. Electric Machinery Fundamentals Fifth Edition. MCGraw-Hill: New York	4%
10	Identifying the Types and Notations of Synchronous/Asynchronous Generators and Synchronous/Asynchronous Motors	 Active identification, tracing sources of information and discussions Accuracy of identification results of the type and function of synchronous/asynchronous generator/motor Accuracy of analysis results Accuracy of conclusions on the types of synchronous/asynchronous generators/motors 	score 30 3.Accuracy of identification results and functions of the	Case studies. directly identify the type and notation of synchronous/asynchronous generators and synchronous/asynchronous motors 60	Case studies. Students search for sources of information, discuss and identify, draw details, interpret, analyze and conclude the types and notations of synchronous/asynchronous generators and synchronous/asynchronous motors 40 minutes	Material: Able to identify the types and notation of synchronous generators and synchronous generators and motors . Literature:	4%

11	Able to identify, analyze and conclude the differences between synchronous/asynchronous generator parts and synchronous/asynchronous motors and their functions	 Participative when carrying out identification and discussions Accuracy of identification Accuracy of analysis results Accuracy of the conclusions of the parts and their functions 	Criteria: 1.Participative when identifying and discussing, max score 40 2.Accuracy of identification results, max score 20 3.Accuracy of analysis results, max score 20 4.Accuracy of conclusions about the parts and their functions, max score 20 Form of Assessment : Participatory Activities, Portofiol Assessment	Case studies, identify and make detailed drawings of synchronous/asynchronous generato/motor parts through direct observation 40	Case studies. Students search for sources of information, discuss and identify, draw details, interpret, analyze and conclude the parts of a DC generator/motor and their functions 60 minutes	Material: Carrying out measurements and calculations of quantities on DC generators and DC motors Reference: Joko, 2018. Alternating Current Machines. University Press: Surabaya	4%
12	able to calculate quantities on synchronous/asynchronous generators and synchronous/asynchronous motors	 Participative when searching for sources of information, discussions, and carrying out calculations Accuracy in calculating quantities for 1 phase and 3 phase synchronous generators Accuracy in calculating quantities for 1 phase and 3 phase induction generators Accuracy in calculating quantities for 1 phase and 3 phase synchronous motors Accuracy in calculating quantities for 1 phase and 3 phase asynchronous motors 	Criteria: 1.Participative, max score 40 2.Accuracy in calculating quantities for 1 phase and 3 phase synchronous generators, max score 15 3.Accuracy in calculating quantities for 1 phase and 3 phase asynchronous generators, max score 15 4.Accuracy in calculating quantities for 1 phase and 3 phase synchronous motors, max score 15 5.Accuracy in calculating quantities for 1 phase and 3 phase synchronous motors, max score 15 5.Accuracy in calculating quantities for 1 phase and 3 phase synchronous motors, max score 15 Form of Assessment : Participatory Activities,		Case study 100 minutes	Material: Calculation of quantities in AC generators and AC motors References: Material: Calculation of quantities in AC generators and AC motors Reference: Stephen J. Chapman, 2012. Electric Machinery Fundamentals Fifth Edition. MCGraw-Hill: New York	4%
13	Able to identify, test, interpret, analyze and prove the characteristics of synchronous/asynchronous generators and synchronous/asynchronous motors	 Participative Accuracy in making characteristics Accuracy in analyzing the characteristics that have been obtained compared to characteristics based on theory and theory Accuracy of conclusions 	Criteria: 1.Participative, max score 40 2.Accuracy in creating characteristics, max score 20 3.Accuracy of analysis results, max score 20 4.Conclusion accuracy, max score 20 Form of Assessment : Participatory Activities, Portfolio Assessment	Case Studies. Students in groups carry out characteristic testing of synchronous/asynchronous generators, synchronous/asynchronous motors, by preparing experimental designs, tool and material requirements, drawing circuits, making data tables, and carrying out characteristic tests, making and data tables. 60 minutes	Students hold discussions to interpret data, analyze data and draw conclusions on the results of proving the characteristics of synchronous/asynchronous generators and synchronous/asynchronous motors 40 minutes	Material: Characteristics of synchronous/asynchronous generators and synchronous/asynchronous motors Reference: Stephen J. Chapman, 2012. Electric Machinery Fundamentals Fith Edition. MCGraw-Hill: New York	4%

14	Able to calculate losses and efficiency of synchronous/asynchronous motors, calculate generator voltage regulation and calculate induction motor slip	 Participation Calculating losses, efficiency and voltage regulation of 1 phase and 3 phase synchronous generators Calculating losses, efficiency and voltage regulation of 1 phase and 3 phase asynchronous generators Calculating losses, efficiency and slip of 1 phase and 3 phase synchronous motors Calculating losses, efficiency and slip of 1 phase and 3 phase synchronous motors 	Criteria: 1.Participation, max score 40 2.Accuracy of calculating losses, efficiency and voltage regulation of 1 phase and 3 phase synchronous generators, max score 15 3.Accuracy of loss calculation results, efficiency and voltage regulation of 1 phase and 3 phase induction generators, max score 15 4.Accuracy of loss, efficiency and slip calculation results for 1 phase and 3 phase synchronous motors, max score 15 5.Accuracy of loss, efficiency and slip calculation results for 1 phase synchronous motors, max score 15 Form of Assessment : Participatory Activities, Portfolio Assessment	Case study. Students study e-books, explore sources of information, have discussions to calculate losses and efficiency of synchronous/asynchronous generators, synchronous/asynchronous motors, both 1 phase and 3 phase, generator voltage regulation and asynchronous motor slip and present the results 100 minutes	Material: Losses and efficiency of synchronous/asynchronous generators and synchronous/asynchronous motors, slip and voltage regulation. Reference: Slobodan N. Vukosavic, 2013. Electrical Machines. Springer-Verlag: New York	4%
15	Able to solve actual problems related to synchronous/asynchronous generators and synchronous/asynchronous motors in accordance with applicable provisions/regulations, and present the results	 Actively exploring sources of information, discussions and presentations The accuracy of the information sources accessed Accuracy in problem solving procedures Completeness of problem solving The correctness of the final result of solving the problem The quality of the content, presentation video and the duration of the presentation video sent by the link 	Criteria: 1. Accuracy of identifying problems, max score 20 2. Accuracy of information sources accessed, max score 20 3. Accuracy of procedures for solving problems, max score 20 4. Correctness of the final result of solving the problem, max score 20 5. Quality of content, video and duration of video sent by the link, max score 17 6. Activeness in exploring sources of information, discussions and presentations, max score 3 Form of Assessment : Participatory Activities, Portfolio Assessment	Case studies. Given practice questions in the form of actual problems, students search for relevant sources of information to discuss. Next, students solve actual problems and students complete and hold discussions and present the results and collect a portfolio for 100 minutes	Material: Actual problems related to generators and DC motors in accordance with provisions/regulations, and presenting the results. Reference: Stephen J. Chapman, 2012. Electric Machine Fundamentals Fifth Edition. MCGraw-Hill: New York	5%
16	UAS (Able to solve problems with DC generators, DC motors, synchronous generators, induction generators, synchronous motors and asynchronous motors	 Identifying problems Sequence of solving problems How to solve the problem The final result of solving the problem 	Criteria: 1.Participative, max score 10 2.Accuracy in identifying problems, max score 20 3.Accuracy in solving problems, max score 25 4.Accuracy in solving problems, max score 25 5.Accuracy of final problem solving results, max score 20 Form of Assessment : Participatory Activities, Tests	Case study 100 minutes	Material: Final Semester Exam Solving actual problems with DC Generators/Motors, Synchronous/Asynchronous Generators, Synchronous/Asynchronous Motors Library: Stephen J. Chapman, 2012. Electric Machinery Fundamentals Fith Edition. MCGraw-Hill: New York	30%

Evaluation Percentage Recap: Case Study

No	Evaluation	Percentage
1.	Participatory Activities	51.5%
2.	Portfolio Assessment	23.5%
3.	Test	25%
		100%

- Learning Outcomes of Study Program Graduates (PLO Study Program) are the abilities possessed by each Study Program graduate which are the internalization of attitudes, mastery of knowledge and skills according to the level of their study program obtained through the learning process.
 The PLO imposed on courses are several learning outcomes of study program graduates (CPL-Study Program) which are used for the formation/development of a course consisting of aspects of attitude, general skills, special skills and knowledge.
 Program Objectives (PO) are abilities that are specifically described from the PLO assigned to a course, and are specific to the study material or learning materials for that are specifically described from the PLO assigned to a course, and are specific to the study material or learning materials for that and specific to the study material or learning materials for that and specifically described from the PLO assigned to a course, and are specific to the study material or learning materials for that and specifically described from the PLO assigned to a course, and are specific to the study material or learning materials for that and specifically described from the PLO assigned to a course, and are specific to the study material or learning materials for that and specifically described from the PLO assigned to a course, and are specific to the study material or learning materials for that and specifically described from the PLO assigned to a course, and are specific to the study material or learning materials for that and specifically described from the PLO assigned to a course, and are specific to the study material or learning materials for that and specifically described from the PLO assigned to a course of the specific to the study material or learning materials for that and specifical spe
- course
- 4. Subject Sub-PO (Sub-PO) is a capability that is specifically described from the PO that can be measured or observed and is the final ability that is planned at each learning
- stage, and is specific to the learning material of the course. Indicators for assessing ability in the process and student learning outcomes are specific and measurable statements that identify the ability or performance of student 5.
- Assessment Criteria are benchmarks used as a measure or measure of learning achievement in assessments based on predetermined indicators. Assessment criteria are guidelines for assessors so that assessments are consistent and unbiased. Criteria can be quantitative or qualitative. 6. 7 Forms of assessment: test and non-test.
- 8. Forms of learning: Lecture, Response, Tutorial, Seminar or equivalent, Practicum, Studio Practice, Workshop Practice, Field Practice, Research, Community Service and/or other equivalent forms of learning. Learning Methods: Small Group Discussion, Role-Play & Simulation, Discovery Learning, Self-Directed Learning, Cooperative Learning, Collaborative Learning, Contextual
- 9.
- Learning, Project Based Learning, and other equivalent methods. 10. Learning materials are details or descriptions of study materials which can be presented in the form of several main points and sub-topics. 11. The assessment weight is the percentage of assessment of each sub-PO achievement whose size is proportional to the level of difficulty of achieving that sub-PO, and the total is 100%. 12. TM=Face to face, PT=Structured assignments, BM=Independent study.