

Universitas Negeri Surabaya Faculty of Engineering, Electrical Engineering Undergraduate Study Program

Document Code

COU	6

SEMESTER LEARNING PLAN

Cour	ses			CODE			Cours	e Fam	ily	C	credit	Weig	ht	\$	SEMES	STER	Compilation Date
Engir	neering Ph	ysics		2020103039			Compu Progra			т	=3 F	P=0 E	CTS=4.	77	-	1	April 24, 2023
AUTH	HORIZATIC	N		SP Develope	SP Developer				Cou	rse	Clust	er Coo	ordinato	r s	Study	Progra	n Coordinator
				Puput Wanart	Roswina Dianawati, S.Pd., M.Ed. ; D Puput Wanarti Rusimamto, S.T., M.T Hj. Euis Ismayati, M.Pd.				Prof. Dr. Bambang Suprianto, m.T.			ŀ,	Dr. Lusia Rakhmawati, S.T., M.T.				
Learr mode		Project Based L	earr	ning													
Prog	ram	PLO study prog	grai	m that is charge	d to the	e coui	rse										
Lear	ning omes	Program Objec	tive	es (PO)													
(PLO		PO - 1		le to apply knowle						ces,	inforr	nation	technol	ogy,	and el	ectrical	engineering to
			Ŭ	in a thorough unde	erstandin	ig of e	ngineerir	ng prin	ciples								
		PLO-PO Matrix															
			F	1													
				P.O													
		PO-1															
			_														
		PO Matrix at th	e ei	nd of each learn	ing sta	ge (Si	u b-PO)										
				P.O							Wee	ek					
					1 2	3	4 5	6	7	8	9	10	11	12	13	14	15 16
			-	PO-1													
			L					1					1 1			I	
	t Course cription	This course cons engineering. The Newton's laws an	ba	of theory and pra sic physics prese ynamics, etc.	ctice whented inc	nich di cludes	scusses vector	the ba calculi	asic pł us, tw	nysic o-dir	s of e nensio	ngine onal n	ering, es notion, p	specia projec	ally the ctile m	e basics otion, c	of mechanica ircular motion
Refe	rences	Main :															
				rid, dan Robert Res angga,1987.	snick (di	terjem	ahkan ol	eh Pai	ntur si	labar	n dan	Erwin	Sucipto)), Fis	ika jilid	l I Edisi	Ketiga, jakarta
		Supporters:															
		1. Sears, F. Penerbit		dan M.W.Zemansk I, 1984.	y (disad	dur ole	h Ir. Soe	darjan	a dan	Drs.	Amir	Achma	ad). Fis	ika u	ntuk U	niversita	us 1 . bandung
Supp lectu	porting Irer	Dr. Puput Wanart Roswina Dianawa		usimamto, S.T., M. S.Pd., M.Ed.	т.												
Week	Final abi learning (Sub-PO)		-	Evalu	uation Crite	eria &	Form	Off	Le Stu	arni dent	Assig mateo	ethod gnmei d time	nts,		mate	rning erials r <mark>ences</mark>]	Assessment Weight (%)
(0)		(0)		(0)				off	line)			<u> </u>				-1	(-)
(1)		(2)		(3)		(4)			(5)			(6)			(7)	(8)

1	Students can understand and solve problems related to two- dimensional motion	 Understand the position of objects understand the speed of objects understand the acceleration of objects 	Criteria: Evaluation Rubric Form of Assessment : Participatory Activities	Lectures, discussions, problem solving and questions and answers 2 X 50	Material: Meeting material 1 Reader: Halliday, David, and Robert Resnick (translated by Pantur Silaban and Erwin Sucipto), Physics volume I, Third Edition, Jakarta: Erlangga Publishers, 1987.	5%
2	Students can understand and solve problems related to gradient, divergence and curl, line integrals, surface and volume theorems of Gauss and Stokes in Cartesian, polar and cylindrical coordinate systems	 Understand gradients, divergence and curl. Understand line, surface and volume integrals Understand the Gauss and Stokes theorems on Cartesian, polar and cylindrical coordinate systems 	Criteria: Evaluation Rubric Form of Assessment : Project Results Assessment / Product Assessment	Lectures, discussions and questions and answers 2 X 50	Material: Meeting material 2 Bibliography: Halliday, David, and Robert Resnick (translated by Pantur Silaban and Erwin Sucipto), Physics volume I, Third Edition, Jakarta: Erlangga Publishers, 1987.	5%
3	Understanding Electric Force: Electric Charge and Coulomb's LawUnderstanding the Concept of Electric Field, Electric Field by Point Charge Distribution and Electric Field by Continuous Charge DistributionUnderstanding electric field flux, Gauss's Law and applying it.	 Students can understand Electric Force: Electric Charge and Coulomb's Law Students can understand the concept of electric fields, electric fields by point charge distribution and electric fields by continuous charge distribution Students can understand electric field flux, Gauss's Law and apply it. 	Criteria: Evaluation Rubric Form of Assessment : Participatory Activities	Lectures, discussions and questions and answers 3 X 50	Material: Meeting material 3 Readers: Sears, FW and MWZemansky (adapted by Ir. Soedarjana and Drs. Amir Achmad). Physics for Universities 1 . Bandung: ITM Publishers, 1984.	10%
4	Understanding Electric Force: Electric Charge and Coulomb's LawUnderstanding the Concept of Electric Field, Electric Field by Point Charge Distribution and Electric Field by Continuous Charge DistributionUnderstanding electric field flux, Gauss's Law and applying it.	 Students can understand Electric Force: Electric Charge and Coulomb's Law Students can understand the concept of electric fields, electric fields by point charge distribution and electric fields by continuous charge distribution Students can understand electric field flux, Gauss's Law and apply it. 	Criteria: Evaluation Rubric	Lectures, discussions and questions and answers 3 X 50	Material: Meeting material 4 Reader: Sears, FW and MWZemansky (adapted by Ir. Soedarjana and Drs. Amir Achmad). Physics for Universities 1 . Bandung: ITM Publishers, 1984.	5%

5	Explain and understand magnetic fields Explain the concepts of Ampere's Law and Biot Savart's Law, and apply them Understand Faraday's Law of Induction and inductance	 Calculate the Lorentz Force experienced by a charge moving in a magnetic field. Calculating the Lorentz Force experienced by an electric current in a magnetic field. Calculating the torque in an 	Criteria: Evaluation Rubric Form of Assessment : Participatory Activities, Project Results Assessment / Product Assessment	Lectures, discussions, exercises 3 X 50	Material: Meeting material 5 Bibliography: Halliday, David, and Robert Resnick (translated by Pantur Silaban and Erwin Sucipto), Physics volume I, Third Edition,	0%
		 4. Explains the concepts of Ampere's Law and Biot Savart's Law, as well 5. Calculate the magnitude of the magnetic flux in an area. 6. Calculating the induced emf in a conductor and in a coil using Faraday's Law and Lenz's Law 			Erlangga Publishers, 1987.	
		 7. Explain the concept of inductance. 8. Calculating the self-inductance of the coil. 9. Calculate magnetic energy and density. 10. Calculate the mutual inductance of two coils 				

6	Explain and understand magnetic fields Explain the concepts of Ampere's Law and Biot Savart's Law, and apply them Understand Faraday's Law of Induction and inductance	 Calculate the Lorentz Force experienced by a charge moving in a magnetic field. Calculating the Lorentz Force experienced by an electric current in a magnetic field. Calculating the torque in an electric current loop Explains the concepts of Ampere's Law and Biot Savart's Law, as well Calculate the magnitude of the magnetic flux in an area. Calculating the induced emf in a conductor and in a coil using Faraday's Law Explain the concept of inductance. Calculate magnetic energy and density. Calculate the mutual inductance of two coils 	Criteria: Evaluation Rubric Form of Assessment : Participatory Activities, Project Results Assessment / Product Assessment	Lectures, discussions, exercises 3 X 50		Material: Meeting material 6 Reader: Sears, FW and MWZemansky (adapted by Ir. Soedarjana and Drs. Amir Achmad). Physics for Universities 1 . Bandung: ITM Publishers, 1984.	10%
---	---	--	---	--	--	---	-----

7	Explain and understand magnetic fields Explain the concepts of Ampere's Law, and Biot Savart's Law, and apply them Understand Faraday's Law of Induction and inductance	 Calculate the Lorentz Force experienced by a charge moving in a magnetic field. Calculating the Lorentz Force experienced by an electric current in a magnetic field. Calculating the torque in an electric current loop Explains the concepts of Ampere's Law and Biot Savart's Law, as well Calculate the magnitude of the magnetic flux in an area. Calculating the induced emf in a conductor and in a coil using Faraday's Law Explain the concept of inductance. Calculate the magnetic energy and density. Calculate the magnetic energy and density. Calculate the mutual inductance of two coils 	Criteria: Evaluation Rubric Form of Assessment : Participatory Activities, Project Results Assessment / Product Assessment	Lectures, discussions, exercises 3 × 50	Material: Meeting material 7 Reader: Halliday, David, and Robert Resnick (translated by Pantur Silaban and Erwin Sucipto), Physics volume I, Third Edition, Jakarta: Erlangga Publishers, 1987.	5%
8	Meetings 1 to 7	Meetings 1 to 7	Criteria: Evaluation Rubric Form of Assessment : Test	Written Test 3 X 50	Material: Meeting material 1-7 Bibliography: Halliday, David, and Robert Resnick (translated by Pantur Silaban and Erwin Sucipto), Physics volume I, Third Edition, Jakarta: Erlangga Publishers, 1987.	15%
9	Explain Current Resistance and Electric Voltage	 Explain the various phenomena contained in the RC circuit Explain the difference between electrical energy and electrical power. 	Criteria: Evaluation Rubric Form of Assessment : Project Results Assessment / Product Assessment	Lectures, discussions, exercises 3 X 50	Material: Meeting material 9 Reader: Halliday, David, and Robert Resnick (translated by Pantur Silaban and Erwin Sucipto), Physics volume I, Third Edition, Jakarta: Erlangga Publishers, 1987.	5%

10	Explain and understand Alternating Current	 Explain the various behaviors of resistors, capacitors and inductors in alternating electrical circuits. Explain and use phasor diagrams to calculate impedance Calculating the resonant frequency in an alternating electrical circuit. Calculating power in an 	Criteria: Evaluation Rubric Form of Assessment : Project Results Assessment / Product Assessment	Lectures, discussions, questions and answers, exercises and assignments 3 X 50	Material: Meeting material 10 Reader: Halliday, David, and Robert Resnick (translated by Pantur Silaban and Erwin Sucipto), Physics volume I, Third Edition, Jakarta: Erlangga Publishers, 1987.	5%
11	Explain and use induced magnetic fields. Explain the origin of displacement currents. Explain the meaning of Maxwell's equations and use them.	alternating electrical circuit 1.Mention the use of induced magnetic fields 2Calculating shift current 3.Explain Maxwell's equations	Criteria: Evaluation Rubric Form of Assessment : Project Results Assessment / Product Assessment	Lectures, discussions, questions and answers, and 3 X 50 exercises	Material: Material from meeting 11 Bibliography: Halliday, David, and Robert Resnick (translated by Pantur Silaban and Erwin Sucipto), Physics volume I, Third Edition, Jakarta: Erlangga Publishers, 1987.	5%
12	Explain, understand the process of the birth of electromagnetic waves from Maxwell's equations. Explain the spectrum of electromagnetic waves. Explain the transmission path of electromagnetic waves. Explain electromagnetic waveguides. Explain electromagnetic wave radiation. Explain and how to calculate the Poynting Vector	 Write down electromagnetic waves from Maxwell's Equations. Mention the electromagnetic wave spectrum. Explain the transmission path of electromagnetic waves. Explain electromagnetic waveguides. Explain electromagnetic wave radiation. Calculating Poynting Vectors. 	Criteria: Evaluation Rubric	Lectures, discussions, questions and answers, and 3 × 50 exercises	Material: Meeting material 12 Reader: Sears, FW and MWZemansky (adapted by Ir. Soedarjana and Drs. Amir Achmad). Physics for Universities 1 . Bandung: ITM Publishers, 1984.	5%

13	Explain, understand the process of the birth of electromagnetic waves from Maxwell's equations. Explain the spectrum of electromagnetic waves. Explain the transmission path of electromagnetic waves. Explain electromagnetic waveguides. Explain electromagnetic wave radiation. Explain and how to calculate the Poynting Vector	 Write down electromagnetic waves from Maxwell's Equations. Mention the electromagnetic wave spectrum. Explain the transmission path of electromagnetic waves. Explain electromagnetic waves. Explain electromagnetic waves. Explain electromagnetic waves. S.Explain electromagnetic wavers. S.Explain electromagnetic wave radiation. calculating Poynting Vectors. 	TTOULLE	Lectures, discussions, questions and answers, and 3 X 50 exercises		Material: Meeting material 13 Reader: Halliday, David, and Robert Resnick (translated by Pantur Silaban and Erwin Sucipto), Physics volume I, Third Edition, Jakarta: Erlangga Publishers, 1987.	5%
----	--	--	---------	---	--	---	----

14	1. Understand the	1.Explain and	Criteria:	Lectures,	Material:	5%
	propagation properties of	calculate the	Evaluation Rubric	discussions,	Meeting	270
	light 2. Understand	energy and		questions	material 14	
	reflection and refraction	momentum of	Form of	and	Reader:	
	3. Understand interference 4.	light.	Assessment :	answers,	Halliday,	
	Understand diffraction.		Project Results	and	David, and	
	grating and spectrum 5. Understand Polarization	2.Explain and use the Doppler	Assessment /	3 X 50	Robert	
	Understand Polarization	Effect.	Product	exercises	Resnick	
			Assessment		(translated by	
		Explain and use the Laws of			Pantur	
		Reflection and			Silaban and	
		Refraction			Erwin	
		4.Explain the			Sucipto),	
					Physics	
		relationship			volume I, Third Edition,	
		between			Jakarta:	
		Huygen's Principle and			Erlangga	
		the Law of			Publishers,	
		Reflection and			1987.	
		Reaction.				
		5.Explains the				
		•				
		event of total internal				
		reflection. 6.Explain and				
		use Fermat's				
		principle in				
		reflection and				
		refraction				
		events				
		7.Explain the concepts of				
		geometric				
		optics and				
		wave optics. 8.Explain the				
		•				
		interaction				
		between				
		spherical waves and plane				
		mirrors and				
		spherical mirrors.				
		9.Explain the				
		properties of				
		thin lenses.				
		10.Explain the				
		principle of				
		Young's				
		Experiment and				
		its benefits.				
		11.Explain the				
		definition of				
		coherence.				
		12.Explains				
		interference				
		events in thin				
		layers.				
		13.Explain the				
		working				
		principle of the				
		Michelson				
		interferometer.				
		14.Explain and				
		use the concept				
		of diffraction on				
		gratings.				
		15.Explain and				
		calculate the				
		resolving power				
		of a lattice.				

			-		1	r	
15	1. Understand the	1.Explain and	Criteria:	Lectures,		Material:	10%
	propagation properties of	calculate the	Evaluation Rubric	discussions,		Meeting	
	light 2. Understand	energy and		questions		material 15	
	reflection and refraction		Form of	and		Reader:	
	3. Understand	momentum of	Assessment :	answers,		Halliday,	
	interference 4.	light.	Participatory	and		David, and	
	Understand diffraction, grating and spectrum 5.	2.Explain and	Activities, Project	3 X 50		Robert	
	Understand Polarization	use the Doppler	Results	exercises		Resnick	
		Effect.	Assessment /	EXELCISES		(translated by	
		3.Explain and	Product			Pantur	
		use the Laws of	Assessment			Silaban and	
		Reflection and	Assessment			Erwin	
		Refraction					
		4.Explain the				Sucipto),	
						Physics	
		relationship				volume I,	
		between				Third Edition,	
		Huygen's				Jakarta:	
		Principle and				Erlangga	
		the Law of				Publishers,	
		Reflection and				1987.	
		Reaction.					
		5.Explains the					
		event of total					
		internal					
		reflection.					
		6.Explain and					
		use Fermat's					
		principle in					
		reflection and					
		refraction					
		events					
		7.Explain the					
		concepts of					
		geometric					
		optics and					
		wave optics.					
		8.Explain the					
		interaction					
		between					
		spherical waves					
		and plane					
		mirrors and					
		spherical					
		mirrors.					
		9.Explain the					
		properties of					
		thin lenses.					
		10.Explain the					
		principle of					
		Young's					
		Experiment and					
		its benefits.					
		11.Explain the					
		definition of					
		coherence.					
		12.Explains					
		interference					
		events in thin					
		layers.					
		13.Explain the					
		working					
		principle of the					
		Michelson					
		interferometer.					
		14.Explain and					
		use the concept					
		of diffraction on					
		gratings.					
		15.Explain and					
		calculate the					
		resolving power					
		of a lattice.					
<u>ـــــا</u>					•	•	

16	Evaluation Rubric	Criteria: Evaluation Rubric Form of Assessment : Project Results Assessment / Product Assessment, Test	writing test	Material: Meeting material 1-15 Bibliography: Halliday, David, and Robert Resnick (translated by Pantur Silaban and Erwin Sucipto), Physics volume I, Third Edition, Jakarta: Erlangga Publishers, 1987.	15%
----	-------------------	---	--------------	---	-----

Evaluation Percentage Recap: Project Based Learning

No	Evaluation	Percentage
1.	Participatory Activities	27.5%
2.	Project Results Assessment / Product Assessment	50%
3.	Test	22.5%
		100%

Notes

- Learning Outcomes of Study Program Graduates (PLO Study Program) are the abilities possessed by each Study
 Program graduate which are the internalization of attitudes, mastery of knowledge and skills according to the level of their
 study program obtained through the learning process.
- The PLO imposed on courses are several learning outcomes of study program graduates (CPL-Study Program) which are
 used for the formation/development of a course consisting of aspects of attitude, general skills, special skills and knowledge.
- 3. **Program Objectives (PO)** are abilities that are specifically described from the PLO assigned to a course, and are specific to the study material or learning materials for that course.
- 4. **Subject Sub-PO (Sub-PO)** is a capability that is specifically described from the PO that can be measured or observed and is the final ability that is planned at each learning stage, and is specific to the learning material of the course.
- 5. Indicators for assessing abilities in the process and student learning outcomes are specific and measurable statements that identify the abilities or performance of student learning outcomes accompanied by evidence.
- 6. Assessment Criteria are benchmarks used as a measure or measure of learning achievement in assessments based on predetermined indicators. Assessment criteria are guidelines for assessors so that assessments are consistent and unbiased. Criteria can be quantitative or qualitative.
- 7. Forms of assessment: test and non-test.
- 8. Forms of learning: Lecture, Response, Tutorial, Seminar or equivalent, Practicum, Studio Practice, Workshop Practice, Field Practice, Research, Community Service and/or other equivalent forms of learning.
- 9. Learning Methods: Small Group Discussion, Role-Play & Simulation, Discovery Learning, Self-Directed Learning,
- Cooperative Learning, Collaborative Learning, Contextual Learning, Project Based Learning, and other equivalent methods. 10. Learning materials are details or descriptions of study materials which can be presented in the form of several main points and sub-topics.
- 11. The assessment weight is the percentage of assessment of each sub-PO achievement whose size is proportional to the level of difficulty of achieving that sub-PO, and the total is 100%.
- 12. TM=Face to face, PT=Structured assignments, BM=Independent study.