

## Universitas Negeri Surabaya Faculty of Engineering, Electrical Engineering Undergraduate Study Program

Document Code

| UNES                        | A           |                                                             |                                          |                                                    |                                                                     |                                         |                                                                                 |                                       |                                 |                                          |                              |  |
|-----------------------------|-------------|-------------------------------------------------------------|------------------------------------------|----------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------|---------------------------------------------------------------------------------|---------------------------------------|---------------------------------|------------------------------------------|------------------------------|--|
|                             |             |                                                             |                                          | SEME                                               | STER L                                                              | EAR                                     | NING                                                                            | PLAN                                  |                                 |                                          |                              |  |
| Courses                     |             |                                                             |                                          | CODE                                               |                                                                     | Course                                  | Family                                                                          | Credit Weight                         |                                 | SEMESTER                                 | Compilation<br>Date          |  |
| Electroni                   | ic Cir      | cuits II                                                    |                                          | 2020102162                                         |                                                                     |                                         |                                                                                 | T=2 P=0                               | ECTS=3.18                       | 3                                        | July 17, 2024                |  |
| AUTHOR                      | RIZAT       | TON                                                         |                                          | SP Develope                                        | r                                                                   |                                         | Cours                                                                           | se Cluster C                          | Coordinator                     | Study Progra<br>Coordinator              | am                           |  |
|                             |             |                                                             |                                          |                                                    |                                                                     |                                         |                                                                                 | Rakhmawati,<br>, M.T.                 |                                 |                                          |                              |  |
| Learning<br>model           | J           | Case Studies                                                |                                          |                                                    |                                                                     |                                         |                                                                                 |                                       |                                 |                                          |                              |  |
| Program<br>Learning         |             | PLO study pro                                               | gram th                                  | nat is charge                                      | d to the cou                                                        | rse                                     |                                                                                 |                                       |                                 |                                          |                              |  |
| Outcom                      |             | Program Object                                              | tives (I                                 | PO)                                                |                                                                     |                                         |                                                                                 |                                       |                                 |                                          |                              |  |
| (PLO)                       |             | PLO-PO Matrix                                               |                                          |                                                    |                                                                     |                                         |                                                                                 |                                       |                                 |                                          |                              |  |
|                             |             |                                                             |                                          | P.O                                                |                                                                     |                                         |                                                                                 |                                       |                                 |                                          |                              |  |
|                             |             | PO Matrix at th                                             | e end c                                  | of each learn                                      | ing stage (Si                                                       | ub-PO)                                  |                                                                                 |                                       |                                 |                                          |                              |  |
|                             |             |                                                             |                                          |                                                    |                                                                     |                                         |                                                                                 |                                       |                                 |                                          |                              |  |
|                             |             |                                                             | P.0                                      | 0                                                  |                                                                     |                                         | ,                                                                               | Week                                  |                                 |                                          |                              |  |
|                             |             |                                                             |                                          | 1 2                                                | 3 4 5                                                               | 5 6                                     | 7 8                                                                             | 9 10                                  | 11 12                           | 13 14 :                                  | 15 16                        |  |
| Short<br>Course<br>Descript | tion        | Field Effect Trai<br>Negative Feedba                        | nsistors,<br>.ck, Line                   | FET Circuits<br>ar Op-Amp Ci                       | s, Thyristors,<br>rcuits, Oscillato                                 | Frequenc<br>ors, Regul                  | cy Effects,<br>lated Power                                                      | Op-Amp Th<br>Supplies.                | neory, Other                    | Op-Amp Theo                              | ries, Op-Amp                 |  |
| Referen                     | ces         | Main :                                                      |                                          |                                                    |                                                                     |                                         |                                                                                 |                                       |                                 |                                          |                              |  |
|                             |             | Circuits, 2. Floyd Th 3. Malvino 4. Robert E                | Third Edomas L.<br>Albbert I<br>Boylesta | dition. New Jei<br>2001. Electro<br>Paul, Bates Da | rsey: Prentice I<br>nics Fundame<br>avid. 2016. Ele<br>Nashelsky. 1 | Hall Care<br>ntals , Fift<br>ctronic Pr | er & Techno<br>th Edition. N<br>rinciples , Ei                                  | ology.<br>lew Jersey:<br>ght Edition. | Prentice-Hall I<br>New York: Mc | nternational, Ir<br>. Graw-Hill.         | Devices and nc.  New Jersey: |  |
|                             |             | Supporters:                                                 |                                          |                                                    |                                                                     |                                         |                                                                                 |                                       |                                 |                                          |                              |  |
|                             |             |                                                             |                                          |                                                    |                                                                     |                                         |                                                                                 |                                       |                                 |                                          |                              |  |
| Support<br>lecturer         |             | Dr. Agus Budi Sa<br>Ibrohim, S.T., M.<br>Dr. Nur Kholis, S. | Τ.                                       |                                                    |                                                                     |                                         |                                                                                 |                                       |                                 |                                          |                              |  |
| Week-                       | eac<br>stag |                                                             |                                          | Evalu                                              | ation                                                               |                                         | Help Learning,<br>Learning methods,<br>Student Assignments,<br>[Estimated time] |                                       | ods,<br>nents,                  | Learning<br>materials<br>[<br>References | Assessment<br>Weight (%)     |  |
|                             | (Su         | ık DON                                                      |                                          | ndicator                                           | Criteria & F                                                        | orm                                     | Offline (<br>offline )                                                          | Online                                | ( online )                      | ]                                        |                              |  |
| (1)                         |             | (2)                                                         |                                          | (3)                                                | (4)                                                                 |                                         | (5)                                                                             |                                       | (6)                             | (7)                                      | (8)                          |  |

|   | T                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                | _                                                                                        | , |    |
|---|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|------------------------------------------------------------------------------------------|---|----|
| 1 | Explain the characteristics of Field-effect Transistors (FET)                                    | 1.Explain about atomic theory, 2.Explain the meaning of electron flow 3.Explain the meaning of electric current 4.Explain the meaning of electric potential 5.Explain the meaning of voltage/voltage difference 6.Explain the meaning of electrical units 7.Explain the meaning of electrical units 7.Explain the meaning of electrical units 9.Calculating conductor resistance 10.Calculate changes in resistance due to changes in temperature | Criteria: The correct answer gets a score of 100 | Discussion, providing examples of application and assignments in the 2 X 50 theory class |   | 0% |
| 2 | Describe, give examples and apply atomic theory, basic knowledge concepts and circuit parameters | 1.Explain about atomic theory, 2.Explain the meaning of electron flow 3.Explain the meaning of electric current 4.Explain the meaning of electric potential 5.Explain the meaning of voltage/voltage difference 6.Explain the meaning of electrical units 7.Explain the meaning of electrical units 7.Explain the meaning of electrical units 9.Calculating conductor resistance 10.Calculate changes in resistance due to changes in temperature | Criteria: The correct answer gets a score of 100 | Discussion, providing examples of application and assignments in the 4 X 50 theory class |   | 0% |

|   |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                | ı                                                                                                                                                       | T | 1 | ı  |
|---|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|----|
| 3 | Understand and apply the basic laws of electricity and basic theory of electrical circuits | 1.Explain direct current (DC) generation 2.Explain the types of direct current 3.Explain Faraday's law 4.Explain Kirchhoff's law 19s 5.Explain Ohm's law 6.Explain Lenz's law 7.Calculate the branch voltage across some resistance 8.Calculate the equivalent resistance in a series circuit. 9.Calculating equivalent resistance in parallel circuits. 10.Calculating the branch current in a two-branch parallel circuit. 11.Calculating equivalent resistance in series-parallel (mixed) circuits 12.Calculate the magnitude of the conductance G 13.Skilled in carrying out practical work in the laboratory to validate series, parallel and mixed connections. | test score: number of correct answers x 100, divided by the number of test items | Discussion, giving examples of R circuit problems and assignments in theory class, Practical validation of 4 x 50 series, parallel and mixed R circuits |   |   | 0% |

| _ | 1                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | T                                                                                                                 | T                                                                                                                                                       | 1 | 1  |
|---|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---|----|
| 4 | Understand and apply the basic laws of electricity and basic theory of electrical circuits            | 1.Explain direct current (DC) generation 2.Explain the types of direct current 3.Explain Faraday's law 4.Explain Faraday's law 4.Explain Kirchhoff's law 19s 5.Explain Ohm's law 6.Explain Lenz's law 7.Calculate the branch voltage across some resistance 8.Calculate the equivalent resistance in a series circuit. 9.Calculating equivalent resistance in parallel circuits. 10.Calculating the branch current in a two-branch parallel circuit. 11.Calculating equivalent resistance in series-parallel (mixed) circuits 12.Calculate the magnitude of the conductance G 13.Skilled in carrying out practical work in the laboratory to validate series, parallel and mixed connections. | test score: number of correct answers x 100, divided by the number of test items                                  | Discussion, giving examples of R circuit problems and assignments in theory class, Practical validation of 4 X 50 series, parallel and mixed R circuits |   | 0% |
| 5 | Can analyze and evaluate the concept of direct current electric power, and practice in the laboratory | Calculate the amount of DC2 electrical power. calculate DC3 electrical work. calculate DC4 electric heat. Skilled in carrying out practical work in the laboratory to validate electrical power.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Criteria: The test score is obtained by: number of correct answers x 100 then divided by the number of test items | Discussion, providing examples of electrical power problems and assignments in theory class. Practical validation of the R 2 X 50 circuit               |   | 0% |

| _ |                               |                                 |                        |                       |   | 25: |
|---|-------------------------------|---------------------------------|------------------------|-----------------------|---|-----|
| 6 | Able to use the mesh current  | 1.Calculating the               | Criteria:<br>The score | Discussion, providing |   | 0%  |
|   | method to solve               | number of                       | obtained by            |                       |   |     |
|   | problems in                   | mesh currents,                  | students is the        | examples of           |   |     |
|   | complex direct                | <ol><li>Determines</li></ol>    | number of              | solving               |   |     |
|   | current circuits 2.           | the direction of                | correct answers        | complex               |   |     |
|   | Skilled in validating         | the mesh                        | x 100 divided by       | electrical            |   |     |
|   | the theory of the             | current,                        | the number of          | circuits              |   |     |
|   | mesh current<br>method in the | 3.Write down                    | test items             | using the             |   |     |
|   | laboratory                    | the mesh                        |                        | mesh                  |   |     |
|   |                               | current                         |                        | current               |   |     |
|   |                               | equation                        |                        | method and            |   |     |
|   |                               |                                 |                        | assignments           |   |     |
|   |                               | 4.Calculate the                 |                        | in theory             |   |     |
|   |                               | magnitude of                    |                        | classes.              |   |     |
|   |                               | each mesh                       |                        | Practical             |   |     |
|   |                               | current using                   |                        | validation of         |   |     |
|   |                               | elimination                     |                        | the                   |   |     |
|   |                               | <ol><li>Calculate the</li></ol> |                        | 4 X 50 mesh           |   |     |
|   |                               | magnitude of                    |                        | flow method           |   |     |
|   |                               | each mesh                       |                        |                       |   |     |
|   |                               | current using a                 |                        |                       |   |     |
|   |                               | matrix.                         |                        |                       |   |     |
|   |                               | 6.Calculate the                 |                        |                       |   |     |
|   |                               | amount of                       |                        |                       |   |     |
|   |                               | current,                        |                        |                       |   |     |
|   |                               | voltage, or                     |                        |                       |   |     |
|   |                               | resistance in                   |                        |                       |   |     |
|   |                               | the mesh                        |                        |                       |   |     |
|   |                               |                                 |                        |                       |   |     |
|   |                               | using driving                   |                        |                       |   |     |
|   |                               | point                           |                        |                       |   |     |
|   |                               | resistance                      |                        |                       |   |     |
|   |                               | 7.Calculate the                 |                        |                       |   |     |
|   |                               | amount of                       |                        |                       |   |     |
|   |                               | current,                        |                        |                       |   |     |
|   |                               | voltage, or                     |                        |                       |   |     |
|   |                               | resistance in                   |                        |                       |   |     |
|   |                               | the mesh                        |                        |                       |   |     |
|   | 1                             | using transfer                  |                        |                       |   |     |
|   |                               | resistance                      |                        |                       |   |     |
|   |                               | 8.Skilled in                    |                        |                       |   |     |
|   |                               | validating the                  |                        |                       |   |     |
|   |                               | mesh flow                       |                        |                       |   |     |
|   |                               | method                          |                        |                       |   |     |
|   |                               | through                         |                        |                       |   |     |
|   |                               | practical work                  |                        |                       |   |     |
|   |                               | in the                          |                        |                       |   |     |
|   |                               |                                 |                        |                       |   |     |
|   | 1                             | laboratory                      |                        |                       | 1 |     |

|   | 1                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | T                                                                                                                               | ı                                                                                                                                                                                          | Τ |  | 1  |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|----|
| 7 | 1. Able to use the mesh current method to solve problems in complex direct current circuits 2. Skilled in validating the theory of the mesh current method in the laboratory | 1.Calculating the number of mesh currents, 2.Determines the direction of the mesh current, 3.Write down the mesh current equation 4.Calculate the magnitude of each mesh current using elimination 5.Calculate the magnitude of each mesh current using a matrix. 6.Calculate the amount of current, voltage, or resistance in the mesh using driving point resistance 7.Calculate the amount of current, voltage, or resistance in the mesh using transfer resistance 8.Skilled in validating the mesh flow method through practical work in the laboratory | Criteria: The score obtained by students is the number of correct answers x 100 divided by the number of test items             | Discussion, providing examples of solving complex electrical circuits using the mesh current method and assignments in theory classes. Practical validation of the 4 X 50 mesh flow method |   |  | 0% |
| 8 | Explore meetings 3 to 7 regarding basic electrical circuits, electric power, and mesh current methods                                                                        | Correctly solve basic electrical circuit problems 2. Correctly solve DC electrical power problems 3. Correctly solve DC electrical circuit problems using the mesh current method. 4. Skilled in carrying out practical work to validate theory                                                                                                                                                                                                                                                                                                              | Criteria:<br>There isn't any                                                                                                    | Practice<br>solving<br>basic<br>electrical<br>circuit<br>problems,<br>electrical<br>power, and<br>2 X 50 mesh<br>current                                                                   |   |  | 0% |
| 9 | MID SEMESTER<br>EXAMINATION<br>See meetings 1 to<br>8                                                                                                                        | See meetings 1 to 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Criteria: The score is obtained by: the number of items answered is multiplied by 100 then divided by the number of test items. | 2 X 50 exam                                                                                                                                                                                |   |  | 0% |

| 10 Able to use the node voltage problems in complex direct current circuits  1. Counting the number of vertices, and the vertex of the vertex | 0% |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|

|    | 1                                    |                                   | T                 | 1             | 1 | 1 |     |
|----|--------------------------------------|-----------------------------------|-------------------|---------------|---|---|-----|
| 14 | Able to use                          | 1.Calculating the                 | Criteria:         | Discussion,   |   |   | 0%  |
|    | impedance network                    | equivalent                        | The test score is | providing     |   |   |     |
|    | analysis solving<br>methods to solve | resistance for                    | obtained by: the  | examples of   |   |   |     |
|    | methods to solve                     |                                   | number of test    | solving       |   |   |     |
|    | problems in direct                   | the Thevenins                     | items answered    | complex       |   |   |     |
|    | current electrical circuits          | and Norton                        | correctly x 100   | electrical    |   |   |     |
|    | circuits                             | circuits,                         | then divided by   | circuits      |   |   |     |
|    |                                      | <ol><li>Calculate the</li></ol>   | the total number  |               |   |   |     |
|    |                                      | open circuit                      | of test items     | using the R   |   |   |     |
|    |                                      | voltage (Voc)                     |                   | network       |   |   |     |
|    |                                      | for the                           |                   | analysis      |   |   |     |
|    |                                      |                                   |                   | method, and   |   |   |     |
|    |                                      | Thevenins                         |                   | assignments   |   |   |     |
|    |                                      | circuit.                          |                   | in theory     |   |   |     |
|    |                                      | <ol><li>Calculate the</li></ol>   |                   | classes.      |   |   |     |
|    |                                      | short circuit                     |                   | Practical     |   |   |     |
|    |                                      | current (Isc)                     |                   | validation of |   |   |     |
|    |                                      | for the Norton                    |                   | several R     |   |   |     |
|    |                                      | circuit,                          |                   | 2 X 50        |   |   |     |
|    |                                      | 4.Establish the                   |                   | network       |   |   |     |
|    |                                      | Thevenins and                     |                   | analyzes      |   |   |     |
|    |                                      | Nortons                           |                   | -             |   |   |     |
|    |                                      |                                   |                   |               |   |   |     |
| 1  |                                      | equivalent                        |                   |               |   |   | i I |
| 1  |                                      | series                            |                   |               |   |   | i   |
| 1  |                                      | <ol><li>5.Understand</li></ol>    |                   |               |   |   | i I |
| 1  |                                      | the triangle-                     |                   |               |   |   | i I |
| 1  |                                      | star                              |                   |               |   |   | i I |
| 1  |                                      | transformation                    |                   |               |   |   | i I |
| 1  |                                      | equation                          |                   |               |   |   | i I |
|    |                                      | 6.Determine the                   |                   |               |   |   | i l |
| 1  |                                      | magnitude of                      |                   |               |   |   | i   |
|    |                                      |                                   |                   |               |   |   | i l |
| 1  |                                      | the impedance                     |                   |               |   |   | i l |
|    |                                      | of the star                       |                   |               |   |   |     |
|    |                                      | from the                          |                   |               |   |   | 1   |
|    |                                      | triangular                        |                   |               |   |   |     |
|    |                                      | connection                        |                   |               |   |   | 1   |
|    |                                      | 7.Determine the                   |                   |               |   |   |     |
|    |                                      | magnitude of                      |                   |               |   |   | 1   |
|    |                                      | the triangle                      |                   |               |   |   |     |
|    |                                      | impedance of                      |                   |               |   |   |     |
|    |                                      | the star                          |                   |               |   |   | 1   |
|    |                                      |                                   |                   |               |   |   | 1   |
|    |                                      | connection.                       |                   |               |   |   |     |
|    |                                      | <ol><li>Calculating the</li></ol> |                   |               |   |   | 1   |
|    |                                      | amount of                         |                   |               |   |   | 1   |
|    |                                      | electricity from                  |                   |               |   |   | 1   |
|    |                                      | a source that                     |                   |               |   |   | 1   |
|    |                                      | works alone                       |                   |               |   |   | 1   |
|    |                                      | 9.Calculating the                 |                   |               |   |   |     |
| 1  |                                      | amount of                         |                   |               |   |   | i I |
| 1  |                                      | electricity                       |                   |               |   |   | i   |
| 1  |                                      | caused by                         |                   |               |   |   |     |
| 1  |                                      | several                           |                   |               |   |   |     |
| 1  |                                      |                                   |                   |               |   |   | i   |
| 1  |                                      | sources                           |                   |               |   |   | i   |
| 1  |                                      | working                           |                   |               |   |   | i   |
| 1  |                                      | simultaneously                    |                   |               |   |   | i l |
| 1  |                                      | 10.Proving the                    |                   |               |   |   | i l |
| 1  |                                      | reciprocity                       |                   |               |   |   | i l |
| 1  |                                      | theory                            |                   |               |   |   | i   |
| 1  |                                      | 11.Proving the                    |                   |               |   |   | i   |
| 1  |                                      | compensation                      |                   |               |   |   | i   |
| 1  |                                      | theory                            |                   |               |   |   | i   |
| 1  |                                      | 12.Calculating                    |                   |               |   |   | i   |
| 1  |                                      | series-parallel                   |                   |               |   |   | i   |
| 1  |                                      | equivalent                        |                   |               |   |   | i   |
| 1  |                                      | circuits                          |                   |               |   |   | i   |
|    |                                      | 13.Determine                      |                   |               |   |   | i l |
| 1  |                                      |                                   |                   |               |   |   | i l |
| 1  |                                      | matching                          |                   |               |   |   | i I |
| 1  |                                      | requirements                      |                   |               |   |   | i I |
| 1  |                                      | 14.Calculate the                  |                   |               |   |   | i I |
| 1  |                                      | maximum                           |                   |               |   |   | i I |
| 1  |                                      | power transfer                    |                   |               |   |   | i I |
| 1  |                                      | 15.Skilled in                     |                   |               |   |   | i I |
| 1  |                                      | validating                        |                   |               |   |   | i   |
| 1  |                                      | resistance                        |                   |               |   |   | i l |
| 1  |                                      |                                   |                   |               |   |   | i l |
| 1  |                                      | network theory                    |                   |               |   |   | i I |
| 1  |                                      | through                           |                   |               |   |   | i I |
|    |                                      |                                   | •                 | i .           | 1 | 1 | ı   |
| 1  |                                      | practical work                    |                   |               |   |   | ! I |
|    |                                      | in the                            |                   |               |   |   |     |
|    |                                      |                                   |                   |               |   |   |     |
|    |                                      | in the                            |                   |               |   |   |     |

| 15 | Explore meetings<br>10 to 14 regarding<br>the node voltage<br>method and R<br>resistance network | 1.Correctly solve circuit problems using the node voltage method 2.Correctly solving DC electrical circuit problems through analysis of the R resistance network 3.Skilled in carrying out practicums to validate theories | Criteria:     calculate the rational amount of activity | Training in solving mesh flow method problems and R 2 X 50 network analysis |  | 0% |
|----|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------------------|--|----|
| 16 | FINAL EXAMS                                                                                      | See meetings 1<br>through 15                                                                                                                                                                                               | Criteria:<br>See meetings 1<br>through 15               | 2 X 50 test<br>exam                                                         |  | 0% |

**Evaluation Percentage Recap: Case Study** 

| No | Evaluation | Percentage |
|----|------------|------------|
|    |            | 0%         |

## Notes

- Learning Outcomes of Study Program Graduates (PLO Study Program) are the abilities possessed by each Study Program graduate which are the internalization of attitudes, mastery of knowledge and skills according to the level of their study program obtained through the learning process.
- The PLO imposed on courses are several learning outcomes of study program graduates (CPL-Study Program)
  which are used for the formation/development of a course consisting of aspects of attitude, general skills, special skills
  and knowledge.
- 3. **Program Objectives (PO)** are abilities that are specifically described from the PLO assigned to a course, and are specific to the study material or learning materials for that course.
- 4. Subject Sub-PO (Sub-PO) is a capability that is specifically described from the PO that can be measured or observed and is the final ability that is planned at each learning stage, and is specific to the learning material of the course.
- Indicators for assessing ability in the process and student learning outcomes are specific and measurable statements that identify the ability or performance of student learning outcomes accompanied by evidence.
- 6. **Assessment Criteria** are benchmarks used as a measure or measure of learning achievement in assessments based on predetermined indicators. Assessment criteria are guidelines for assessors so that assessments are consistent and unbiased. Criteria can be quantitative or qualitative.
- 7. Forms of assessment: test and non-test.
- 8. **Forms of learning:** Lecture, Response, Tutorial, Seminar or equivalent, Practicum, Studio Practice, Workshop Practice, Field Practice, Research, Community Service and/or other equivalent forms of learning.
- Learning Methods: Small Group Discussion, Role-Play & Simulation, Discovery Learning, Self-Directed Learning, Cooperative Learning, Collaborative Learning, Contextual Learning, Project Based Learning, and other equivalent methods.
- 10. Learning materials are details or descriptions of study materials which can be presented in the form of several main points and sub-topics.
- 11. The assessment weight is the percentage of assessment of each sub-PO achievement whose size is proportional to the level of difficulty of achieving that sub-PO, and the total is 100%.
- 12. TM=Face to face, PT=Structured assignments, BM=Independent study.