

Universitas Negeri Surabaya Faculty of Engineering, Electrical Engineering Undergraduate Study Program

Document Code

SEMESTER LEARNING PLAN																					
Courses			CODE				Course Family			C	Credit Weight				SEMES	TER	Cor Dat	mpilatio te	on		
Engineering Physics I			202010239	1			Cor	npulso	ory St	udy	т	=2 F	P=0 I	ECTS=3.	18		1	Jul	y 18, 20	24	
AUTHORIZATION			SP Develop	per				yıam	Subje	Co	urse	Clust	ter Co	ordinat	or S	Study F	Program	Coo	rdinato	r	
			Roswina Dianawati, S.Pd., N			M.Ed. Dr. Pi			. Puput Wanarti., ST.,MT				Dr. Lusia Rakhmawati, S.T., M.T.			.,					
Learning model	g Case Studies																				
Program	1	PLO study program that is charged to the course																			
Outcom	es .	Program Objec	tives (PO)																	
(PLO)		PO - 1	Have t	he ability to c	comm	nunica	te eff	ective	ely, thi	nk crit	tically,	and	make	appro	opriate de	ecisio	ons				
		PO - 2 Master basic physics concepts and apply them to the field of electrical engineering																			
		PLO-PO Matrix	-																		
				P.0 P0-1 P0-2																	
	ĺ	PO Matrix at th	e end o	of each lear	rning	l stag	e (Sı	ub-P(C)												
				P.O	1	2	3	4	5	6	7	8	Wee 9	k 10	11	12	13	14	15	16	
			PO	-1																	
			PO	-2																	
Short Study of basic physics of magnetism, electromagn			nysics c romagn	oncepts and etic induction	their 1, and	applic l capa	catior citan	n in el ce.	ectrica	al eng	jineeri	ng, ir	ncludii	ng qu	antities a	and v	ectors,	Coulom	oʻs la	w, elect	ric
Reference	ces	Main :																	-		
 Halliday, Resnic, Jearl Walker. 2011. Principles of Physics, Nir Sears Zemansky. 1986. Fisika Untuk Universitas I. Binacipta. Frederick j. Buece. 2006. Schaums Outline of theory and probl 					nth Ed Iems d	lition. of Col	John llege I	Wiley Physio	/ & Son. cs, edisi I	kesep	ouluh. E	Erlangga									
		Supporters:																			
1. Frederick j. Buece. 2006. Schaums Outline of theory and problems of College Physics, edisi kesepuluh. Erlangga.																					
Supporting lecturer Dr. Puput Wanarti Rusii Dr. Nurhayati, S.T., M.T Roswina Dianawati, S.F		ti Rusim T., M.T. ati, S.Po	amto, S.T., N d., M.Ed.	И.Т.																	
Fir ea Week-		al abilities of h learning ge b-PO)		Evaluation						Help Lea Learning r Student Ass [Estimat		Ip Learning, ning methods, nt Assignments, stimated time]			Learning materials		As W	Assessment Weight (%)			
		505-FOj		ndicator		Crit	teria	& Foi	m	Of of	ffline ffline)	(Online (<i>online</i>)				[Relefences]				
(1)		(2)		(3)	(4)			(5)		(6)				(7)		(8)				

1	Students are able to interpret vector concepts and calculations in the context of engineering physics	 Students are able to explain the basic concepts of vectors and scalars Students are able to apply vector operations in real cases 	Criteria: 1.Ability to explain the definition of vectors and their differences with scalars 2.Ability to solve problems related to vector operations Form of Assessment : Participatory Activities	Discussion lecture and question and answer Case study 2 X 50	Discussion lectures and case study questions and answers	Material: Definition and types of vectors; Vector operations; Application of vectors in physics; Representation of vectors in cartesian, polar and other coordinates References: Halliday, Resnic, Jearl Walker. 2011. Principles of Physics, Ninth Edition. John Wiley & Son.	5%
2	Students are able to describe their understanding of the properties of electric charges and their interactions in various environments	 Students are able to define electric charge and its types Students are able to analyze interactions between contents in case studies 	Criteria: 1.Ability to explain the concept of charge and its properties 2.Ability to apply Coulomb's law in real contexts Form of Assessment : Participatory Activities	Discussion lecture and question and answer Case study 2 X 50	Discussion lectures and case study questions and answers	Material: Basic concepts of electric charge; Laws of conservation of charge; Interaction between charges; Causes and effects of electric charges References: Halliday, <i>Resnic, Jearl Walker. 2011.</i> <i>Principles of</i> <i>Physics, Ninth</i> <i>Edition. John</i> <i>Wiley & Son.</i>	5%
3	Students are able to describe their understanding of the properties of electric charges and their interactions in various environments	 Students are able to define electric charge and its types Students are able to analyze interactions between contents in case studies 	Criteria: 1.Ability to explain the concept of charge and its properties 2.Ability to apply Coulomb's law in real contexts Form of Assessment : Participatory Activities	Discussion lecture and question and answer Case study 2 X 50	Discussion lectures and case study questions and answers	Material: Basic concepts of electric charge; Laws of conservation of charge; Interaction between charges; Causes and effects of electric charges References: <i>Halliday,</i> <i>Resnic, Jearl</i> <i>Walker. 2011.</i> <i>Principles of</i> <i>Physics, Ninth</i> <i>Edition. John</i> <i>Wiley & Son.</i>	5%
4	Students are able to dissect the main aspects of electric fields and communicate their application in real situations	 Students are able to identify sources of electric fields Students are able to analyze the distribution of electric fields in case studies 	Criteria: 1.Ability to define and describe sources of electric fields 2.Ability to calculate the electric field at a certain point based on case information Form of Assessment : Participatory Activities	Discussion lecture and question and answer Case study 2 X 50	Discussion lectures and case study questions and answers	Material: Definition and basic properties of electric fields, electric fields due to point charges, principle of superposition in electric fields, electric fields, electric field lines and equipotential surfaces. References: Halliday, Resnic, Jearl Walker. 2011. Principles of Physics, Ninth Edition. John Wiley & Son.	5%

6	Students are able to dissect the main aspects of electric fields and communicate their application in real situations	 Students are able to identify sources of electric fields Students are able to analyze the distribution of electric fields in case studies 1. Students are	Criteria: 1.Ability to define and describe sources of electric fields 2.Ability to calculate the electric field at a certain point based on case information Form of Assessment : Participatory Activities Criteria:	Discussion lecture and question and answer Case study 2 X 50 Discussion	Discussion lectures and case study questions and answers Discussion lectures	Material: Definition and basic properties of electric fields, electric fields, electric fields due to point charges, principle of superposition in electric fields, electric fields, electric field lines and equipotential surfaces. References: Halliday, Resnic, Jearl Walker. 2011. Principles of Physics, Ninth Edition. John Wiley & Son.	5%
0	students are able to describe the phenomena and applications of magnetic fields in an engineering context	 Students are able to explain the nature and sources of magnetic fields Students are able to describe magnetic fields from electric currents in case studies 	 1.Ability to describe magnetic fields and their effects on matter 2.Ability to apply the Biot-Savart law based on case information Form of Assessment : Participatory Activities 	Discussion lecture and question and answer Case study 2 X 50	and case study questions and answers	Material: Basic concepts of magnetic fields and their sources, Magnetic fields due to electric currents, Lorentz force and its application, Effects of magnetic fields on material References: <i>Halliday,</i> <i>Resnic, Jearl Walker. 2011.</i> <i>Principles of</i> <i>Physics, Ninth</i> <i>Edition. John</i> <i>Wiley & Son.</i>	5%
7	Students are able to describe the phenomena and applications of magnetic fields in an engineering context	 Students are able to explain the nature and sources of magnetic fields Students are able to describe magnetic fields from electric currents in case studies 	Criteria: 1.Ability to describe magnetic fields and their effects on matter 2.Ability to apply the Biot-Savart law based on case information	Discussion lecture and question and answer Case study 2 X 50	Discussion lectures and case study questions and answers	Material: Basic concepts of magnetic fields and their sources, Magnetic fields due to electric currents, Lorentz force and its application, Effects of magnetic fields on material References: Halliday, Resnic, Jearl Walker. 2011. Principles of Physics, Ninth Edition. John Wiley & Son.	5%
8	Midterm Exam (UTS)	Able to understand the concept of quantities in physics, vectors, Coulomb's law, and electric fields	Criteria: Full marks are obtained if you do all the questions correctly Form of Assessment : Test	2 X 50		Material: Vectors and scalars, electric charge, Coulomb's law, electric field. References: Halliday, Resnic, Jearl Walker. 2011. Principles of Physics, Ninth Edition. John Wiley & Son.	15%

9	Students are able to explore and explain the principles of electric potential and their implications in the world of engineering	 Students are able to explain the concept of electric potential Students are able to apply potential concepts in case analysis 	Criteria: 1.Basic understanding of electric potential and its relationship with electric fields 2.Ability to calculate potential changes based on case information Form of Assessment : Participatory Activities	Lecture and question and answer Case study 2 X 50	Lecture and question and answer Case study	Material: Concept of potential and electric potential, Relationship between electric field and electric potential, Electric potential energy, Application in electrical circuits and their components. References: Halliday, Resnic, Jearl Walker. 2011. Principles of Physics, Ninth Edition. John Wiley & Son.	5%
10	Students are able to explore and explain the principles of electric potential and their implications in the world of engineering	 Students are able to explain the concept of electric potential Students are able to apply potential concepts in case analysis 	Criteria: 1.Basic understanding of electric potential and its relationship with electric fields 2.Ability to calculate potential changes based on case information Form of Assessment : Participatory Activities, Project Results Assessment / Product Assessment	Lecture and question and answer Case study 2 X 50	Lecture and question and answer Case study	Material: Concept of potential and electric potential, Relationship between electric field and electric potential, Electric potential, Electric potential energy, Application in electrical circuits and their components. References: Halliday, Resnic, Jearl Walker. 2011. Principles of Physics, Ninth Edition. John Wiley & Son.	5%
11	Students are able to detail the basic concepts of capacitance and communicate its relevance in engineering physics systems	 Students are able to explain capacitance and its function Students are able to design capacitors based on the case studies given 	Criteria: Full marks are obtained if you do all the questions correctly Form of Assessment : Practical Assessment	Lecture, discussion Case study 2 X 50	Lectures, Case study discussions	Material: Introduction to capacitors and capacitance, Basic formulas and capacitance calculations, Types of capacitors and their applications, Capacitors in series and parallel circuits References: Halliday, Resnic, Jearl Walker. 2011. Principles of Physics, Ninth Edition. John Wiley & Son.	5%

12	Students are able to communicate their understanding of the principles of inductance and its application in electrical circuits	 Students are able to define the concept of inductance Students are able to calculate inductance based on the case study given 	Criteria: 1.Basic understanding of self-inductance and cross- inductance 2.Ability to apply inductance formulas to real cases Form of Assessment : Participatory Activities	Lecture and discussion Case study 2 X 50	Case study lectures and discussions	Material: Basic principles of inductance and inductors, Self- inductance, Inductance, Inductance formulas and calculations, Application of inductors in AC and DC circuits References: Halliday, Resnic, Jearl Walker. 2011. Principles of Physics, Ninth Edition. John Wiley & Son.	5%
13	Students are able to communicate their understanding of the principles of inductance and its application in electrical circuits	 Students are able to define the concept of inductance Ability to apply inductance formulas to real cases 	Criteria: 1.Basic understanding of self-inductance and cross- inductance 2.Ability to apply inductance formulas to real cases Form of Assessment : Portfolio Assessment	Lecture and discussion Case study 2 X 50	Case study lectures and discussions	Material: Basic principles of inductance and inductors, Self- inductance, Inductance, formulas and calculations, Application of inductors in AC and DC circuits References: Halliday, Resnic, Jearl Walker. 2011. Principles of Physics, Ninth Edition. John Wiley & Son.	5%
14	Students are able to demonstrate a deep understanding of electromagnetic waves and their impact on modern technology	 Students are able to explain the properties of electromagnetic waves Students are able to analyze the impact of electromagnetic waves in modern technology through case studies 	Criteria: 1. Understanding of the spectrum, properties, and applications of electromagnetic waves 2. Ability to connect the principles of electromagnetic waves with technological applications Form of Assessment : Participatory Activities	Lecture and discussion Case study 2 X 50	Case study lectures and discussions	Material: Basic properties of electromagnetic waves, Spectrum of electromagnetic waves, Propagation of electromagnetic waves References: Halliday, Resnic, Jearl Walker. 2011. Principles of Physics, Ninth Edition. John Wiley & Son.	5%
15	Students are able to demonstrate a deep understanding of electromagnetic waves and their impact on modern technology	 Students are able to explain the properties of electromagnetic waves Students are able to analyze the impact of electromagnetic waves in modern technology through case studies 	Criteria: 1. Understanding of the spectrum, properties, and applications of electromagnetic waves 2. Ability to connect the principles of electromagnetic waves with technological applications Form of Assessment : Participatory Activities, Portfolio Assessment	Lecture and discussion Case study 2 X 50	Case study lectures and discussions	Material: Basic properties of electromagnetic waves, Spectrum of electromagnetic waves, Propagation of electromagnetic waves References: Halliday, Resnic, Jearl Walker. 2011. Principles of Physics, Ninth Edition. John Wiley & Son.	5%
16	Final Semester Examination (UAS)	Able to understand the concepts of potential, capacitance, inductance and electromagnetic waves	Criteria: Full marks are obtained if you do all the questions correctly Form of Assessment : Test	2 X 50		Material: Potential, Capacitance, Inductance, Electromagnetic Waves Library: Halliday, Resnic, Jearl Walker. 2011. Principles of Physics, Ninth Edition. John Wiley & Son.	20%

Evaluation Percentage Recap: Case Study

No	Evaluation	Percentage
1.	Participatory Activities	50%
2.	Project Results Assessment / Product Assessment	2.5%
3.	Portfolio Assessment	7.5%
4.	Practical Assessment	5%
5.	Test	35%
		100%

Notes

- Learning Outcomes of Study Program Graduates (PLO Study Program) are the abilities possessed by each Study
 Program graduate which are the internalization of attitudes, mastery of knowledge and skills according to the level of their
 study program obtained through the learning process.
- 2. The PLO imposed on courses are several learning outcomes of study program graduates (CPL-Study Program) which are used for the formation/development of a course consisting of aspects of attitude, general skills, special skills and knowledge.
- Program Objectives (PO) are abilities that are specifically described from the PLO assigned to a course, and are specific to the study material or learning materials for that course.
 Subject Subje
- 4. **Subject Sub-PO (Sub-PO)** is a capability that is specifically described from the PO that can be measured or observed and is the final ability that is planned at each learning stage, and is specific to the learning material of the course.
- 5. Indicators for assessing ability in the process and student learning outcomes are specific and measurable statements that identify the ability or performance of student learning outcomes accompanied by evidence.
- 6. Assessment Criteria are benchmarks used as a measure or measure of learning achievement in assessments based on predetermined indicators. Assessment criteria are guidelines for assessors so that assessments are consistent and unbiased. Criteria can be quantitative or qualitative.
- 7. Forms of assessment: test and non-test.
- 8. Forms of learning: Lecture, Response, Tutorial, Seminar or equivalent, Practicum, Studio Practice, Workshop Practice, Field Practice, Research, Community Service and/or other equivalent forms of learning.
- 9. Learning Methods: Small Group Discussion, Role-Play & Simulation, Discovery Learning, Self-Directed Learning,
- Cooperative Learning, Collaborative Learning, Contextual Learning, Project Based Learning, and other equivalent methods. 10. Learning materials are details or descriptions of study materials which can be presented in the form of several main points and sub-topics.
- 11. The assessment weight is the percentage of assessment of each sub-PO achievement whose size is proportional to the level of difficulty of achieving that sub-PO, and the total is 100%.
- 12. TM=Face to face, PT=Structured assignments, BM=Independent study.