

Universitas Negeri Surabaya Faculty of Engineering, Electrical Engineering Undergraduate Study Program

Document Code

				SEN	ΛE	STEF	R L	EA	RN	IIN	G	PL	AN.	I			
Courses				CODE			Cou	urse	Fami	ly	1	Credit Weight			SEME	STER	Compilation Date
Computer Graphics			2020102041				Compulsory Study Program Subjects			ŀ	T=2	P=0	ECTS=3.18		6	July 18, 2024	
AUTHOR	RIZAT	ION		SP Develop	er		- Pto	gram	Subj		irse	Clus	ter C	oordinator	Study	Progran	n Coordinator
			Dr. Raden Roro Hapsari Per Tjahyaningtijas, S.Si., M.T.			eni Ag	eni Agustin Prof. E M.T.		of. Dr. I Gusti Putu Asto B., Г.		Dr. Lusia Rakhmawati, S.T., M.T.						
Learning model	I	Project Based	Learn	ning						L							
Program		PLO study program that is charged to the course															
Learning		Program Obj	ective	es (PO)													
(PLO)		PO - 1	Able t princi		edge	of mathe	matic	s and	l Con	nputer	r Gra	aphic	s to g	ain a thoroug	h unders	standing	of engineering
		PLO-PO Matr	ix														
E			P.O PO-1														
		PO Matrix at	the er	d of each learning stage (Sub-PO)													
			PC	P.O	1	2 3	4	5	6	7	8	W 9	eek 10		2 13	14	15 16
Short Course Descript	tion	This course tea good graphics 2D graphic obj	applica	ation svstems.	The	material	studie	d in t	this c	ourse	is a	an int	roduc	tion to compl	iter arap	hics. prí	ze correct and mitive drawing, bjects.
Referen	ces	Main :															
 Edward Ang International Edward Ang Edward Ang Hills, Francis Donald Heat Supporters:		ational d Ange rancis	Inc el. 2002. Open S Jr. 2000. Co	GLTI ompu	M: A Prim Iter Graph	er, Th nics U	ird E sing (dition Open	. Add GL, S	lisor eco	י ח-We nd Eo	sley dition	New Jersey			tion . Pearson	
1. Alan Watt. 3		/att. 3[l D Computer Graphics. Addison-Wesley.														
			Asto Buditjahjanto, S.T., M.T. sari Peni Agustin Tjahyaningtijas, S.S			6.Si.,	м.т.										
Week- ead		ιμ DO)		Evaluation			1	Help Learning, Learning methods, Student Assignments, [Estimated time] Offline (Online (online)			ds, ents, ne]	mate [Refe	rning erials <mark>rences</mark>]	Assessment Weight (%)			
				(3)	+	(4)				ine) 5)	-		(6)	(7)	(8)

1	Students are able to explain the basics of graphics systems and graphics pipelines in the graphics library	 Explaining Graphic Systems Explain the meaning of Computer Graphics Identify the formation of graphs/images Identify models and Graphic System Architecture Identify Computer Graphics applications 	Criteria: Evaluation Rubric Form of Assessment : Project Results Assessment / Product Assessment	Approach: Scientific Model: Problem- based learning Method: Discussion, Presentation, Practicum 2 X 50	Material: Meeting material 1 Reader: Edward Angel. 2009. Interactive Computer Graphics: A Top-Down Approach Using OpenGL, Fifth Edition. Pearson International Inc	5%
2	Students are able to explain the basics of the Graphics Library	 I.Identify Computer Graphics applications Explains the basics of the Graphics Library Explains the background of the Graphics Library Identify examples of Graphics Library Programs Identifying 3D in Graphic Systems 	Criteria: Evaluation Rubric Form of Assessment : Participatory Activities	Approach: Scientific Model: Problem- based learning Method: Discussion, Presentation, Practicum 2 X 50	Material: Meeting material 2 Reader: Edward Angel. 2009. Interactive Computer Graphics: A Top-Down Approach Using OpenGL, Fifth Edition. Pearson International Inc	5%
3	Students are able to create and demonstrate simple graphics programs	1.Explaining Sierpinski Gaskets (2D/3D) 2.Identifying Input and Interaction 3.Explaining Graphics Library Callbacks 4.Applying the Graphic Library to the program code	Criteria: Evaluation Rubric	Approach: Scientific Model: Problem- based learning Method: Discussion, Presentation, Practicum 2 X 50	Material: Meeting material 3 Reader: Edward Angel. 2002. OpenGLTM: A Primer, Third Edition . Addison- Wesley	5%
4	Students are able to create interactive graphic applications	 Identify input, display, menu, and picking devices Apply how to design and build interactive programs with the Graphic Library 	Criteria: Evaluation Rubric Form of Assessment : Participatory Activities	Approach: Scientific Model: Problem- based learning Method: Discussion, Presentation, Practicum 2 X 50	Material: Meeting material 4 References: Hills, Francis S Jr. 2000. Computer Graphics Using OpenGL, Second Edition. New Jersey: Prentice Hall	10%
5	Students are able to implement World Windows and Viewport	 Identify and implement World Windows and Viewport Identify and apply clipping lines Identify and apply regular polygons, circles and arcs 	Criteria: Evaluation Rubric Form of Assessment : Participatory Activities, Project Results Assessment / Product Assessment	Approach: Scientific Model: Problem- based learning Method: Discussion, Presentation, Practicum 2 X 50	Material: Meeting material 5 Bibliography: Donald Hearn and M. Pauline Baker. Computer Graphics with OpenGL, 3rd Edition.	10%

6	Students can implement vector tools	 Explain vectors Explain dot product Explain the cross product of two vectors Explain the representation of key geometric objects Applying vectors to the Graphic Library program 	Criteria: Evaluation Rubric	Approach: Scientific Model: Problem- based learning Method: Discussion, Presentation, Practicum 2 X 50	Material: Meeting material 6 Reader: Alan Watt. 3D Computer Graphics. Addison- Wesley.	10%
7	Students can implement vector tools	 Explain vectors Explain dot product Explain the cross product of two vectors Explain the representation of key geometric objects Applying vectors to the Graphic Library program 	Criteria: Evaluation Rubric Form of Assessment : Project Results Assessment / Product Assessment	Approach: Scientific Model: Problem- based learning Method: Discussion, Presentation, Practicum 2 X 50	Material: Meeting material 6 Reader: Alan Watt. 3D Computer Graphics. Addison- Wesley.	5%
8	Students can implement vector tools	 Explain vectors Explain dot product Explain the cross product of two vectors Explain the representation of key geometric objects Applying vectors to the Graphic Library program 	Criteria: Evaluation Rubric Form of Assessment : Project Results Assessment / Product Assessment	Approach: Scientific Model: Problem- based learning Method: Discussion, Presentation, Practicum 2 X 50	Material: Meeting material 6 Reader: Alan Watt. 3D Computer Graphics. Addison- Wesley.	5%
9	Students can implement vector tools	 Explain vectors Explain dot product Explain the cross product of two vectors Explain the representation of key geometric objects Applying vectors to the Graphic Library program 	Criteria: Evaluation Rubric Form of Assessment : Project Results Assessment / Product Assessment	Approach: Scientific Model: Problem- based learning Method: Discussion, Presentation, Practicum 2 X 50	Material: Meeting material 6 Reader: Alan Watt. 3D Computer Graphics. Addison- Wesley.	5%

10	Students can implement vector tools	 Explain vectors Explain dot product Explain the cross product of two vectors Explain the representation of key geometric objects Applying vectors to the Graphic Library program 	Criteria: Evaluation Rubric Form of Assessment : Project Results Assessment / Product Assessment	Approach: Scientific Model: Problem- based learning Method: Discussion, Presentation, Practicum 2 X 50	Material: Meeting material 6 Reader: Alan Watt. 3D Computer Graphics. Addison- Wesley.	5%
11	Students can implement vector tools	 Explain vectors Explain dot product Explain the cross product of two vectors Explain the representation of key geometric objects Applying vectors to the Graphic Library program 	Criteria: Evaluation Rubric Form of Assessment : Project Results Assessment / Product Assessment	Approach: Scientific Model: Problem- based learning Method: Discussion, Presentation, Practicum 2 X 50	Material: Meeting material 6 Reader: Alan Watt. 3D Computer Graphics. Addison- Wesley.	5%
12	Students can implement vector tools	 Explain vectors Explain dot product Explain the cross product of two vectors Explain the representation of key geometric objects Applying vectors to the Graphic Library program 	Criteria: Evaluation Rubric Form of Assessment : Project Results Assessment / Product Assessment	Approach: Scientific Model: Problem- based learning Method: Discussion, Presentation, Practicum 2 X 50	Material: Meeting material 6 Reader: Alan Watt. 3D Computer Graphics. Addison- Wesley.	5%
13	Students can implement vector tools	 Explain vectors Explain dot product Explain the cross product of two vectors Explain the representation of key geometric objects Applying vectors to the Graphic Library program 	Criteria: Evaluation Rubric Form of Assessment : Project Results Assessment / Product Assessment	Approach: Scientific Model: Problem- based learning Method: Discussion, Presentation, Practicum 2 X 50	Material: Meeting material 6 Reader: Alan Watt. 3D Computer Graphics. Addison- Wesley.	5%

14	Students can implement vector tools	 Explain vectors Explain dot product Explain the cross product of two vectors Explain the representation of key geometric objects Applying vectors to the Graphic Library program 	Criteria: Evaluation Rubric Form of Assessment : Project Results Assessment / Product Assessment	Approach: Scientific Model: Problem- based learning Method: Discussion, Presentation, Practicum 2 X 50	Material: Meeting material 6 Reader: Alan Watt. 3D Computer Graphics. Addison- Wesley.	5%
15	Students can implement vector tools	 Explain vectors Explain dot product Explain the cross product of two vectors Explain the representation of key geometric objects Applying vectors to the Graphic Library program 	Criteria: Evaluation Rubric Form of Assessment : Project Results Assessment / Product Assessment	Approach: Scientific Model: Problem- based learning Method: Discussion, Presentation, Practicum 2 X 50	Material: Meeting material 6 Reader: Alan Watt. 3D Computer Graphics. Addison- Wesley.	5%
16	Students can complete the UAS	 Explain vectors Explain dot product Explain the cross product of two vectors Explain the representation of key geometric objects Applying vectors to the Graphic Library program 	Criteria: Evaluation Rubric Form of Assessment : Project Results Assessment / Product Assessment	Approach: Scientific Model: Problem- based learning Method: Discussion, Presentation, Practicum 2 X 50	Material: Meeting material 6 Reader: Alan Watt. 3D Computer Graphics. Addison- Wesley.	10%

Evaluation Percentage Recap: Project Based Learning

No	Evaluation	Percentage
1.	Participatory Activities	20%
2.	Project Results Assessment / Product Assessment	65%
		85%

Notes

- 1. Learning Outcomes of Study Program Graduates (PLO Study Program) are the abilities possessed by each Study Program graduate which are the internalization of attitudes, mastery of knowledge and skills according to the level of their study program obtained through the learning process.
- 2. The PLO imposed on courses are several learning outcomes of study program graduates (CPL-Study Program) which are used for the formation/development of a course consisting of aspects of attitude, general skills, special skills and knowledge.
- 3. Program Objectives (PO) are abilities that are specifically described from the PLO assigned to a course, and are specific to the study material or learning materials for that course.
 Subject Sub-PO (Sub-PO) is a capability that is specifically described from the PO that can be measured or observed
- and is the final ability that is planned at each learning stage, and is specific to the learning material of the course.
- 5. Indicators for assessing ability in the process and student learning outcomes are specific and measurable statements that identify the ability or performance of student learning outcomes accompanied by evidence.
- 6. Assessment Criteria are benchmarks used as a measure or measure of learning achievement in assessments based on predetermined indicators. Assessment criteria are guidelines for assessors so that assessments are consistent and unbiased. Criteria can be quantitative or qualitative.
- 7. Forms of assessment: test and non-test.

- 8. Forms of learning: Lecture, Response, Tutorial, Seminar or equivalent, Practicum, Studio Practice, Workshop Practice, Field Practice, Research, Community Service and/or other equivalent forms of learning.
- 9. Learning Methods: Small Group Discussion, Role-Play & Simulation, Discovery Learning, Self-Directed Learning, Cooperative Learning, Collaborative Learning, Contextual Learning, Project Based Learning, and other equivalent methods.
- 10. Learning materials are details or descriptions of study materials which can be presented in the form of several main points and sub-topics.
- 11. The assessment weight is the percentage of assessment of each sub-PO achievement whose size is proportional to the level of difficulty of achieving that sub-PO, and the total is 100%.
- 12. TM=Face to face, PT=Structured assignments, BM=Independent study.