

Universitas Negeri Surabaya Faculty of Engineering, Electrical Engineering Undergraduate Study Program

Document Code

UNESA										
		SEMESTER	LEARN	ING	PL	.AN				
Courses		CODE	CODE Course Family		Credit Weight		SEMESTER	Comp Date	oilation	
Control System Basics		2020103019	Compulsory Program Sub		T=3	P=0 E	CTS=4.77	4	May 1	, 2023
AUTHORIZATION		SP Developer	SP Developer		Course Cluster Coordinator			Study Program Coordinator		
		Endryansyah, S.T., M.T.; Bambang Suprianto, M.T Aulia Alamsyah, S.T., M.7	nbang Suprianto, M.T.; Sayyidul M.T.				sia Rakhmawati, S.T., M.T.			
Learning model	Case Studies									
Program	PLO study program	n that is charged to the c	ourse							
Learning Outcomes	Program Objective	es (PO)								
(PLO)	PO - 1 Ab	le to apply basic knowledgineering principles.	ge of electro	nic cor	ntrol s	/stems	to gain a	thorough un	derstan	ding of
		le to understand the need for rent issues	r lifelong learni	ng in th	ne field	of electr	onic contr	ol systems rela	ited to	relevant
	PLO-PO Matrix									
	PO Matrix at the en	PO-1 PO-2 Atrix at the end of each learning stage (Sub-PO)								
		P.O			- 1	Veek	T			
		1 2 3	4 5 6	7	8	9 10	11 12	2 13 14	15	16
		PO-1								
	[PO-2								
Short Course Description	functions, block diagr first order and secon	ncepts and general characte ams and their simplifications d order systems, methods f ques and linear system desig	, system chara or determining	acteristi	ćs (ser	isitivity, a	accuracy, :	stability), transi	ent ana	alysis of
References	Main :									
	 Edward Arnold. 1995. Priciples of Control Engineering, Fred White Ogata. 1997, Modern Control System 3rd Ed, Prentice Hall 									
	Supporters:									
	1. Joseph J.Di	Stefano. 1992,Sistem Penge	ndalian Dan U	mpan E	Balik, E	rlangga,	Jakarta			
Supporting lecturer	Endryansyah, S.T., M	I.T.								

Week-	Final abilities of each learning stage	Eva	luation	Help Learning, Learning methods, Student Assignments, [Estimated time]		Learning materials [References	Assessment Weight (%)
	(Sub-PO)	Indicator	Criteria & Form	Offline (offline)	Online (online)]	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
1	Students are able to explain basic knowledge of control, signal and system concepts	Students are able to explain basic knowledge of control, signal and system concepts	Criteria: Evaluation Rubric Form of Assessment: Participatory Activities	IN 3 X 50		Material: Meeting material 1 Reader: Edward Arnold. 1995. Principles of Control Engineering, Fred White	5%
2	Students are able to explain basic knowledge of control, signal and system concepts	Students are able to explain basic knowledge of control, signal and system concepts correctly	Criteria: Evaluation Rubric Form of Assessment: Participatory Activities	IN 3 X 50		Material: Meeting material 2 Reader: Ogata. 1997, Modern Control Systems 3rd Ed, Prentice Hall	5%
3	Students are able to understand the concept of closed and open loop regulatory systems and their solution methods and applications.	- Explain the concept of closed and open loop regulatory systems - Explain examples of various problems related to closed loop and open loop regulatory systems and their solution techniques.	Criteria: Evaluation Rubric Form of Assessment: Participatory Activities	Lecture, Discussion, 3 X 50		Material: Meeting material 3 Reader: Edward Arnold. 1995. Principles of Control Engineering, Fred White	5%
4	Students are able to understand the concept of closed and open loop regulatory systems and their solution methods and applications.	- Explain the concept of closed and open loop regulatory systems - Explain examples of various problems related to closed loop and open loop regulatory systems and their solution techniques.	Criteria: Evaluation Rubric Form of Assessment: Participatory Activities	Lecture, Discussion, 3 X 50		Material: Meeting material 4 Reader: Joseph J. Di Stefano. 1992, Control and Feedback Systems, Erlangga, Jakarta	5%
5	Students are able to understand the use of the Laplace Transformation in regulatory systems.	- Explain the Laplace transformation, inverse Laplace transformation and differential equations; - Explain the properties of the Laplace transformation Implement existing questions with the MATLAB program	Criteria: Evaluation Rubric	contextual Instruction 3 X 50		Material: Meeting material 5 Reference: Ogata. 1997, Modern Control Systems 3rd Ed, Prentice Hall	5%

			T	T T		
6	Students are able to understand the use of the Laplace Transformation in regulatory systems.	- Explain the Laplace transformation, inverse Laplace transformation and differential equations; - Explain the properties of the Laplace transformation Implement existing questions with the MATLAB program	Criteria: Evaluation Rubric Form of Assessment: Participatory Activities	Case method 3 X 50	Material: Meeting material 6 Reader: Edward Arnold. 1995. Principles of Control Engineering, Fred White	5%
7	Students are able to understand the use of the Laplace Transformation in regulatory systems.	- Explain the Laplace transformation, inverse Laplace transformation and differential equations; - Explain the properties of the Laplace transformation Implement existing questions with the MATLAB program	Criteria: Evaluation Rubric Form of Assessment : Participatory Activities	Case method 3 X 50	Material: Meeting material 6 Reader: Edward Arnold. 1995. Principles of Control Engineering, Fred White	5%
8	Students are able to understand the use of the Laplace Transformation in regulatory systems.	- Explain the Laplace transformation, inverse Laplace transformation and differential equations; - Explain the properties of the Laplace transformation Implement existing questions with the MATLAB program	Criteria: Evaluation Rubric Form of Assessment : Participatory Activities	Case method 3 X 50	Material: Meeting material 6 Reader: Edward Arnold. 1995. Principles of Control Engineering, Fred White	5%
9	Students are able to understand the use of the Laplace Transformation in regulatory systems.	- Explain the Laplace transformation, inverse Laplace transformation and differential equations; - Explain the properties of the Laplace transformation Implement existing questions with the MATLAB program	Criteria: Evaluation Rubric	Case method 3 X 50	Material: Meeting material 6 Reader: Edward Arnold. 1995. Principles of Control Engineering, Fred White	5%
10	Students are able to understand the use of the Laplace Transformation in regulatory systems.	- Explain the Laplace transformation, inverse Laplace transformation and differential equations; - Explain the properties of the Laplace transformation Implement existing questions with the MATLAB program	Criteria: Evaluation Rubric Form of Assessment : Participatory Activities	Case method 3 X 50	Material: Meeting material 6 Reader: Edward Arnold. 1995. Principles of Control Engineering, Fred White	5%

11	Students are able to understand the use of the Laplace Transformation in regulatory systems.	- Explain the Laplace transformation, inverse Laplace	Criteria: Evaluation Rubric	Case method 3 X 50	Material: Meeting material 6 Reader:	5%
		transformation and differential equations; - Explain the properties of the Laplace transformation Implement existing questions with the MATLAB program	Assessment : Participatory Activities		Edward Arnold. 1995. Principles of Control Engineering, Fred White	
12	Students are able to understand the use of the Laplace Transformation in regulatory systems.	- Explain the Laplace transformation, inverse Laplace transformation and differential equations; - Explain the properties of the Laplace transformation Implement existing questions with the MATLAB program	Criteria: Evaluation Rubric Form of Assessment: Participatory Activities	Case method 3 X 50	Material: Meeting material 6 Reader: Edward Arnold. 1995. Principles of Control Engineering, Fred White	5%
13	Students are able to understand the use of the Laplace Transformation in regulatory systems.	- Explain the Laplace transformation, inverse Laplace transformation and differential equations; - Explain the properties of the Laplace transformation Implement existing questions with the MATLAB program	Criteria: Evaluation Rubric Form of Assessment : Participatory Activities	Case method 3 X 50	Material: Meeting material 6 Reader: Edward Arnold. 1995. Principles of Control Engineering, Fred White	5%
14	Students are able to understand the use of the Laplace Transformation in regulatory systems.	- Explain the Laplace transformation, inverse Laplace transformation and differential equations; - Explain the properties of the Laplace transformation Implement existing questions with the MATLAB program	Criteria: Evaluation Rubric Form of Assessment: Participatory Activities	Case method 3 X 50	Material: Meeting material 6 Reader: Edward Arnold. 1995. Principles of Control Engineering, Fred White	5%
15	Students are able to understand the use of the Laplace Transformation in regulatory systems.	- Explain the Laplace transformation, inverse Laplace transformation and differential equations; - Explain the properties of the Laplace transformation Implement existing questions with the MATLAB program	Criteria: Evaluation Rubric Form of Assessment : Participatory Activities	Case method 3 X 50	Material: Meeting material 6 Reader: Edward Arnold. 1995. Principles of Control Engineering, Fred White	5%

16	Students are able to understand the use of the Laplace Transformation in regulatory systems.	- Explain the Laplace transformation, inverse Laplace transformation and differential equations; - Explain the properties of the Laplace transformation Implement existing questions with the MATLAB program	Criteria: Evaluation Rubric Form of Assessment: Participatory Activities	Case method 3 X 50		Material: Meeting material 6 Reader: Edward Arnold. 1995. Principles of Control Engineering, Fred White	5%
----	--	--	---	--------------------------	--	---	----

Evaluation Percentage Recap: Case Study

No	Evaluation	Percentage
1.	Participatory Activities	70%
		70%

Notes

- Learning Outcomes of Study Program Graduates (PLO Study Program) are the abilities possessed by each Study Program graduate which are the internalization of attitudes, mastery of knowledge and skills according to the level of their study program obtained through the learning process.
- The PLO imposed on courses are several learning outcomes of study program graduates (CPL-Study Program)
 which are used for the formation/development of a course consisting of aspects of attitude, general skills, special
 skills and knowledge.
- 3. **Program Objectives (PO)** are abilities that are specifically described from the PLO assigned to a course, and are specific to the study material or learning materials for that course.
- 4. **Subject Sub-PO** (Sub-PO) is a capability that is specifically described from the PO that can be measured or observed and is the final ability that is planned at each learning stage, and is specific to the learning material of the
- Indicators for assessing ability in the process and student learning outcomes are specific and measurable statements that identify the ability or performance of student learning outcomes accompanied by evidence.
- 6. Assessment Criteria are benchmarks used as a measure or measure of learning achievement in assessments based on predetermined indicators. Assessment criteria are guidelines for assessors so that assessments are consistent and unbiased. Criteria can be quantitative or qualitative.
- 7. Forms of assessment: test and non-test.
- 8. Forms of learning: Lecture, Response, Tutorial, Seminar or equivalent, Practicum, Studio Practice, Workshop Practice, Field Practice, Research, Community Service and/or other equivalent forms of learning.
- Learning Methods: Small Group Discussion, Role-Play & Simulation, Discovery Learning, Self-Directed Learning, Cooperative Learning, Collaborative Learning, Contextual Learning, Project Based Learning, and other equivalent methods
- 10. Learning materials are details or descriptions of study materials which can be presented in the form of several main points and sub-topics.
- 11. The assessment weight is the percentage of assessment of each sub-PO achievement whose size is proportional to the level of difficulty of achieving that sub-PO, and the total is 100%.
- ${\bf 12.}\ \ {\sf TM}\text{--}{\sf Face}\ to\ {\sf face},\ {\sf PT}\text{--}{\sf Structured}\ assignments,\ {\sf BM}\text{--}{\sf Independent}\ study.$