

Universitas Negeri Surabaya Faculty of Engineering, Electrical Engineering Undergraduate Study Program

Document Code

SEMESTER LEARNING PLAN

Courses			CODE			C	ourse	e Farr	nily		C	Credit	Weig	ht	SEI	MESTE	R	Cor Dat	mpila e
ntennas an	d Propagation		2020102335	5 Compulsory Stu Program Subject							ECTS=0)	5		Apri 202	il 10, 3			
UTHORIZA	TION		SP Developer					rse C rdina	luste tor	r		Stu	dy Pro	ogram	Coord	linato			
			Dr. Nurhayat Puspitaninga							Prof. M.T.		Gusti	Putu	Asto B.	, C)r. Lusi	a Rakł M.		ati, S. ⁻
earning Iodel	Case Studies																		
rogram	PLO study program that is charged to the course																		
arning utcomes	Program Objectives (PO)																		
LO)	PO - 1	Show	vs a general o	vervie	ew of a	anten	nas, i	radiat	ion m	echar	nisms	and o	curren	t distrib	ution.				
	PO - 2	Able the a	Shows a general overview of antennas, radiation mechanisms and current distribution. Able to design and carry out experiments in the laboratory/field as well as analyze and interpret data to strengthen the assessment of antenna and propagation materials																
	PO - 3		Able to apply engineering principles, identify, formulate and analyze data/information to solve problems in the field of antennas and propagation																
	PO - 4	Able	to plan, comp	lete a	nd ev	aluate	e ante	enna a	and p	ropag	ation	tasks	relate	ed to the	field	of elec	trical e	nginee	ering.
	PO - 5	Able resol	Able to be responsible to society by complying with religious norms, professional ethics and being responsible for resolving antenna and propagation problems																
	PO - 6	Stude	ents have the	respo	nsibil	ity to	expla	in the	ante	nna d	esign	and a	antenr	na applio	cation	s creat	ed.		
			PO-2 PO-3 PO-4 PO-5 PO-6																
	PO Matrix at	the end	the end of each learning stage (Sub-PO)																
			P.0									Mee	k						
			F.U	1	2	3	4	5	6	7	8	Wee 9	к 10	11	12	13	14	15	16
			0.1	т	2	3	4	5	0	1	0	J	10	11	TZ	10	14	10	10
			0-1											$\left \right $					
			0-2											$\left \right $					
			0-3											$\left \right $					
			0-4											$\left \right $					
			<u> </u>							1				1 I					1
		_	O-6																

Short Course Descript	tion Power Density a Bandwidth, Pola radiation, Dipole Antenna, Triang Antenna, Planar	l current distribution and Radiation Inter rization, Input Impe antenna, groundin ular, Bow Tie, Cylir	es an understanding of h, types of antennas and i sity and Efficiency, Bea edance, potential source g effect, Circular loop, F der, Folded Dipole, Spiri, , 3-dimensional design a nt.	their applications, mwidth and Dire is of current and Polygonal loop ar al Antenna, log p	antenna performance ctivity, Numerical Tec electric and magneti tenna, designing Bro eriodic, Fraactal anter	in the form of: Rad hniques, Gain, Be c fields, Wave equa adband Dipole Ante nna, Horn Antenna	ation Patterns, am efficiency, ation, Far field nna, Biconical and Microstrip	
Referen	1. John D. 2. Fawwaz 3. Constan 4. B. Gross 5. G. Ray,	T Ulaby. 2015. Fur tine A. Balanis,. 200 s. 2011. Frontiers in K.Kumar.2003. Bro	na for all application . Mo ndamentals of applied ele 05 . Antenna Theory Ana Antennas Next Generati adband Microstrip Antenı rrays : A Computational A	ctromagnetics. Pe lysis and Design on Design & Engi nas . British.ARTE	earson Education Dorl John WilleY neering . Mc Graw Hill CH HOUSE, INC	5 ,		
	-		: A Computational Approa strip Antennas. British: Al			ay,		
Support lecturer		T., M.T. ingayu, S.T., M.T., I 1	Ph.D.					
Week-	Final abilities of each learning stage	Ev	valuation	Help Learning, Learning methods, Student Assignments, [Estimated time]		Learning materials	Assessment Weight (%)	
	(Sub-PO)	Indicator	Criteria & Form	Offline (offline)	Online (online)	[References]		
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	
1	Describe a general overview of an antenna	Describe the basic concept of antennas · Explain the mechanisms of radiation and current distribution. Explain transmission channels	Criteria: 1.Assessment criteria by looking at: 2.Participation: student activity in expressing opinions, discussing (weight 2) 3.Task: carried out in each indicator (weight 3) Form of Assessment : Participatory Activities	Presentations, group discussions, 2 X 50 discussions		Material: Meeting material 1 Reader: John D. Kraus. 2001. Antennas for all applications. McGraw-Hill Education Singapore	3%	
2	Shows describing the types of antennas and their applications	 Identify the types of antennas and their applications. Describe the types of antennas and their applications. 	Criteria: 1. The assessment criteria are seen from the aspects: 2. Participation: student activity in expressing opinions, answering problem solving, discussing (weight 2) 3. Task: carried out in each indicator (weight 3) Form of Assessment Participatory Activities	Problem Based Learning (PrBL) Model 2 X 50		Material: Meeting material 2 Reader: Fawwaz T Ulaby. 2015. Fundamentals of applied electromagnetics. Pearson Education Dorling Kindersley	3%	

3	Identifying antenna performance in the form of: Radiation Pattern, Power Density and Radiation Intensity and efficiency	Describes radiation patterns, power density and radiation intensity and efficiency	Criteria: 1. The assessment criteria are seen from: 2. Participation: student activity in expressing opinions, answering problem solving, discussing (weight 2) 3. Task: carried out in each indicator (weight 3) Form of Assessment : Participatory Activities, Project Results Assessment / Product Assessment	• Direct and Cooperative Learning Model 2 X 50	Material: Meeting material 3 Reader: Fawwaz T Ulaby. 2015. Fundamentals of applied electromagnetics. Pearson Education Dorling Kindersley	3%
4	Describe Beamwidth and directivity, Numerical Techniques, Gain, Beam efficiency, Bandwidth, Polarization, Input Impedance, potential sources of current and electric and magnetic fields, Wave equations, Far field radiation, Dipole antennas, grounding effects, Circular loops, Polygonal loop antennas.	Describe Beamwidth and directivity, Numerical Techniques, Gain, Beam efficiency, Bandwidth, Polarization Determine Input Impedance, potential sources of current and electric and magnetic fields, Wave equations, Far field radiation, Describe the electronic circuit of analog modulators and demodulators. Explain dipole antenna, grounding effect, circular	Criteria: 1. The assessment criteria are seen from the aspects: 2. Participation: student activity in expressing opinions, answering problem solving, discussing (weight 2) 3. Task: carried out in each indicator (weight 3) Form of Assessment : Participatory Activities	Task Based Cooperative Learning Model (Task Based Learning-TBL) 2 X 50	Material: Meeting material 4 Reader: B. Gross. 2011. Frontiers in Next Generation Antennas Design & Engineering. McGraw Hill	3%
5	Describe Beamwidth and directivity, Numerical Techniques, Gain, Beam efficiency, Bandwidth, Polarization, Input Impedance, potential sources of current and electric and magnetic fields, Wave equations, Far field radiation, Dipole antennas, grounding effects, Circular loops, Polygonal loop antennas.	Describe Beamwidth and directivity, Numerical Techniques, Gain, Beam efficiency, Bandwidth, Polarization Determine Input Impedance, potential sources of current and electric and magnetic fields, Wave equations, Far field radiation, Describe the electronic circuit of analog modulators and demodulators. Explain dipole antenna, grounding effect, circular loop, polygonal loop antenna.	Criteria: 1.Assessment criteria by looking at: 2.Participation: student activity in expressing opinions, answering problem solving, discussing (weight 2) 3.Task: carried out in each indicator (weight 3)	Task Based Cooperative Learning Model (Task Based Learning-TBL) 2 X 50	Material: Meeting material 5 References: G. Ray, K.Kumar.2003. Broadband Microstrip Antennas. British. ARTECH HOUSE, INC	3%

6	Describe Linear, Planar and Circular Array, N element array, MIMO antenna, smart antenna and Broadband Dipole Antenna, Biconical Antenna, Triangular	Describes Linear, Planar and Circular Array, N element array, MIMO antenna, smart antenna Shows Broadband Dipole Antenna, Biconical Antenna, Triangular	Criteria: 1.Assessment criteria by looking at: 2.Participation: student activity in delivering presentations, answering problem solving, discussing (weight 2) 3.Task: carried out in each indicator (weight 3)	Project Based Larning 2 X 50	Material: Meeting material 6 References: K.Kumar, Broadband Microstrip Antennas. British: ARTECH HOUSE, INC., 2003.	5%
7	Describe Linear, Planar and Circular Array, N element array, MIMO antenna, smart antenna and Broadband Dipole Antenna, Biconical Antenna, Triangular	Describes Linear, Planar and Circular Array, N element array, MIMO antenna, smart antenna Shows Broadband Dipole Antenna, Biconical Antenna, Triangular	Criteria: 1. The assessment criteria are seen from: 2.1. Participation: student activity in delivering presentations, answering problem solving, discussing (weight 5) 3.2. Task: carried out for each indicator (weight 5) Form of Assessment :	Project Based Larning 2 X 50	Material: Meeting material 7 References: RLHaupt, Antenna Arrays : A Computational Approach. John Wiley & Sons, Inc, 2010.G. Ray,	5%
			Participatory Activities, Project Results Assessment / Product Assessment			
8	UTS	1.Understand the concept of antennas and wave propagation 2.Understand the types of antennas	Criteria: Evaluation Rubric Form of Assessment Project Results Assessment / Product Assessment, Test	Test/Quiz 2 X 50	Material: Meeting material 1-7 Reader: John D. Kraus. 2001. Antennas for all applications. McGraw-Hill Education Singapore	20%
9	Shows Bow Tie, Cylinder, Folded Dipole	• Explain Bow Tie, Cylinder, Folded Dipole	Criteria: 1.Evaluation Rubric (weight 2) 2.Task: carried out in each indicator (weight 3) Form of Assessment Project Results Assessment / Product Assessment	Presentation, group discussion and reflection 2 X 50	Material: Meeting material 9 Reader: John D. Kraus. 2001. Antennas for all applications. McGraw-Hill Education Singapore	3%
10	Shows software supporting antenna design	Shows software supporting antenna design	Criteria: 1.Evaluation Rubric(5) 2.Participation: student activity in showing design results, answering problem solutions, discussing (weight 5)	Discussion and reflection 2 X 50	Material: Meeting material 10 Reader: Fawwaz T Ulaby. 2015. Fundamentals of applied electromagnetics. Pearson Education Dorling Kindersley	3%
			Form of Assessment : Participatory Activities, Project Results Assessment / Product Assessment			

11	Antenna simulation along with applications and measurements and Design and performance analysis of Broadband Dipole Antenna, Biconical Antenna, Planar Antenna	• Antenna simulation along with applications and measurements Design and performance analysis of Broadband Dipole Antenna, Biconical Antenna, Planar Antenna	Criteria: Task: carried out in each indicator (weight 5) Form of Assessment : Participatory Activities, Project Results Assessment / Product Assessment	Group discussion, Project Based Learning, reflection 2 X 50	Material: Meeting material 11 Reader: John D. Kraus. 2001. Antennas for all applications. McGraw-Hill Education Singapore	5%
12	Antenna simulation along with applications and measurements and Design and performance analysis of Broadband Dipole Antenna, Biconical Antenna, Planar Antenna	 Antenna simulation along with applications and measurements Design and performance analysis of Broadband Dipole Antenna, Biconical Antenna, Planar Antenna 	Criteria: 1.Evaluation Rubric 2.Participation is seen from students' activeness in answering questions and discussing expressing opinions (weight 5) 3.Task: carried out in each indicator (weight 3) Forms of Assessment : Participatory Activities, Project Results	DiscussionPBL 2 X 50	Material: Meeting material 12 Reader: Constantine A. Balanis. 2005 . Antenna Theory Analysis and Design. John Wille Y	3%
			Assessment / Product Assessment, Practical Assessment			
13	Design and performance analysis of microstrip, Triangular, Bow Tie, Cylinder, Folded Dipole antennas	Able to design and analyze the performance of microstrip, Triangular, Bow Tie, Cylinder, Folded Dipole antennas	Criteria: 1.Evaluation Rubric 2.Assignments: Students carry out assignments given according to the indicators Forms of Assessment : Participatory Activities, Project Results Assessment / Product Assessment, Practical Assessment	presentation, group discussion and reflection 2 X 50	Material: Meeting material 13 Reader: John D. Kraus. 2001. Antennas for all applications. McGraw-Hill Education Singapore Material: Meeting material 13 References:	3%
14	Design and performance analysis of Spiral Antenna.log periodic, Fraactal antenna, Design and performance analysis of Antenna array, MIMO	Design and performance analysis of Spiral Antenna.log periodic, Fraactal antenna Design and performance analysis of Antenna array, MIMO	Criteria: Participation: student activity in showing design results, answering problem solutions, discussing (weight 5) Forms of Assessment : Participatory Activities, Project Results Assessment / Product Assessment, Portfolio Assessment	PBL 2 X 50 Discussion	Material: Meeting material 14 References: G. Ray, K.Kumar.2003. Broadband Microstrip Antennas. British. ARTECH HOUSE, INC	5%
15	Design and performance analysis of Spiral Antenna.log periodic, Fraactal antenna, Design and performance analysis of Antenna array, MIMO	Design and performance analysis of Spiral Antenna.log periodic, Fraactal antenna Design and performance analysis of Antenna array, MIMO	Criteria: Evaluation Rubric Forms of Assessment : Participatory Activities, Project Results Assessment / Product Assessment, Practices / Performance	PBL 2 X 50 Discussion	Material: Meeting material 15 Reader: John D. Kraus. 2001. Antennas for all applications. McGraw-Hill Education Singapore	5%
16	UAS	Can understand and carry out antenna design and analysis of results	Criteria: Evaluation Rubric Forms of Assessment : Participatory Activities, Project Results Assessment, Product Assessment, Practice / Performance, Tests	UAS 2 X 50	Material: Meeting materials 1-15 Reader: John D. Kraus. 2001. Antennas for all applications. McGraw-Hill Education Singapore	30%

Evaluation Percentage Recap: Case Study

No	Evaluation	Percentage
1.	Participatory Activities	31.34%
2.	Project Results Assessment / Product Assessment	32.34%
3.	Portfolio Assessment	1.67%
4.	Practical Assessment	2%
5.	Practice / Performance	9.17%
6.	Test	17.5%
		94.02%

Notes

- Learning Outcomes of Study Program Graduates (PLO Study Program) are the abilities possessed by each Study
 Program graduate which are the internalization of attitudes, mastery of knowledge and skills according to the level of their
 study program obtained through the learning process.
- 2. The PLO imposed on courses are several learning outcomes of study program graduates (CPL-Study Program) which are used for the formation/development of a course consisting of aspects of attitude, general skills, special skills and knowledge.
- 3. **Program Objectives (PO)** are abilities that are specifically described from the PLO assigned to a course, and are specific to the study material or learning materials for that course.
- 4. **Subject Sub-PO (Sub-PO)** is a capability that is specifically described from the PO that can be measured or observed and is the final ability that is planned at each learning stage, and is specific to the learning material of the course.
- 5. Indicators for assessing ability in the process and student learning outcomes are specific and measurable statements that identify the ability or performance of student learning outcomes accompanied by evidence.
- Assessment Criteria are benchmarks used as a measure or measure of learning achievement in assessments based on predetermined indicators. Assessment criteria are guidelines for assessors so that assessments are consistent and unbiased. Criteria can be quantitative or qualitative.
- 7. Forms of assessment: test and non-test.
- 8. Forms of learning: Lecture, Response, Tutorial, Seminar or equivalent, Practicum, Studio Practice, Workshop Practice, Field Practice, Research, Community Service and/or other equivalent forms of learning.
- 9. Learning Methods: Small Group Discussion, Role-Play & Simulation, Discovery Learning, Self-Directed Learning,
- Cooperative Learning, Collaborative Learning, Contextual Learning, Project Based Learning, and other equivalent methods. 10. Learning materials are details or descriptions of study materials which can be presented in the form of several main points and sub-topics.
- 11. The assessment weight is the percentage of assessment of each sub-PO achievement whose size is proportional to the level of difficulty of achieving that sub-PO, and the total is 100%.
- 12. TM=Face to face, PT=Structured assignments, BM=Independent study.