

Universitas Negeri Surabaya Faculty of Engineering , Electrical Engineering Education Undergraduate Study Program

Document Code

				SEME	STER L	EA	RNI	NG	PL		1				
Courses				CODE		Cours	se Fam	ily	Cre	edit W	/eight		SEM	IESTER	Compilation Date
Electron	ic Me	easurements		8320102097					T=2	2 P=	0 EC	TS=3.18		3	July 17, 2024
AUTHOR	RIZAT	ION		SP Developer				Course Cluster Coordinator			Study Program Coordinator				
													Dr.	Nur Kho	lis, S.T., M.T.
Learning model	I	Project Based L	earning	9											
Program Learning		PLO study prog	gram tl	hat is charge	ed to the cour	se									
Outcom (PLO)		Program Object	tives (PO)											
(FLO)		PLO-PO Matrix													
P.O PO Matrix at the end of each learning stage (Sub-PO)															
		PO Matrix at th	e end o	of each learn	ing stage (Su	ıb-PO)								
			P.	.0					Weeł	<					
				1 2	3 4 5	6	7	8	9	10	11	12	13	14	15 16
Short Course Descript	tion	Understanding at (4) matters of a oscilloscope (7) r	ccuracy	in méasuring	g, (5) measurir	ng curi	rent an	d volta	age v						
Referen	ces	Main :													
		Analisis	Rangka	ian Listrik AC.	Circuits. Schaur Surabaya: Une urabaya: Unesa	esa Un	iversity	Press	Mun						
		Supporters:													
Support lecturer		Dr. Nur Kholis, S. Dr. Farid Baskord													
Week-	eac sta			Evalu	ation		Help Learning, Learning methods, Student Assignments, [Estimated time]			5,	ma	arning iterials [erences	Assessment Weight (%)		
	(Su	Ъ-РО)	h	ndicator	Criteria & F	orm		ine(ine)]				
(1)		(2)		(3)	(4)		(!	5)			(6)			(7)	(8)

1	Describe, give examples and apply atomic theory, basic knowledge concepts and circuit parameters	 Explain about atomic theory, Explain the meaning of electron flow Explain the meaning of electric current Explain the meaning of electric potential Explain the meaning of voltage/voltage difference Explain the meaning of electrical units Explain the meaning of electrical units Explain the meaning of electric charge Explain the meaning of capacitance Calculating conductor resistance Calculate changes in resistance due to changes in temperature 	Criteria: The correct answer gets a score of 100	Discussion, providing examples of application and assignments in the 4 X 50 theory class		0%
2	Describe, give examples and apply atomic theory, basic knowledge concepts and circuit parameters	 Explain about atomic theory, Explain the meaning of electron flow Explain the meaning of electric current Explain the meaning of electric current Explain the meaning of voltage/voltage difference Explain the meaning of electrical units Explain the meaning of electrical units Explain the meaning of electric charge Explain the meaning of capacitance Calculating conductor resistance Calculate changes in resistance due to changes in temperature 	Criteria: The correct answer gets a score of 100	Discussion, providing examples of application and assignments in the 4 X 50 theory class		0%

3	Understand and	1.Explain direct	Criteria:			0%
	apply the basic laws of electricity	current (DC)	test score: number of	Discussion,		
	and basic theory of	generation	correct answers	giving examples of		
	electrical circuits	2.Explain the	x 100, divided by	R circuit		
		types of direct current	the number of test items	problems		
		3.Explain		and		
		Faraday's law		assignments		
		4.Explain		in theory class,		
		Kirchhoff's law		Practical		
		19s		validation of		
		5.Explain Ohm's		4 X 50		
		law		series,		
		6.Explain Lenz's law		parallel and mixed R		
		7.Calculate the		circuits		
		branch voltage				
		across some				
		resistance				
		8.Calculate the				
		equivalent				
		resistance in a				
		series circuit. 9.Calculating				
		equivalent				
		resistance in				
		parallel				
		circuits.				
		10.Calculating				
		the branch				
		current in a two-branch				
		parallel circuit.				
		11.Calculating				
		equivalent				
		resistance in				
		series-parallel				
		(mixed) circuits				
		12.Calculate the				
		magnitude of the				
		conductance				
		G				
		13.Skilled in				
		carrying out				
		practical work				
		in the				
		laboratory to validate series,				
		parallel and				
		mixed				
		connections.				
		<u> </u>	ļ	ļ		

4	Understand and apply the basic laws of electricity and basic theory of electrical circuits	 Explain direct current (DC) generation Explain the types of direct current Explain Faraday's law Explain Kirchhoff's law 19s Explain Ohm's law Explain Lenz's law Explain Lenz's law Explain Lenz's law Calculate the branch voltage across some resistance Calculate the equivalent resistance in a series circuit. Calculating equivalent resistance in parallel circuits. Calculating the branch current in a two-branch parallel circuit. Calculating equivalent resistance in series-parallel (mixed) circuits Calculate the magnitude of the conductance G Skilled in carrying out practical work in the laboratory to validate series, parallel and mixed connections. 	Criteria: test score: number of correct answers x 100, divided by the number of test items	Discussion, giving examples of R circuit problems and assignments in theory class, Practical validation of 4 X 50 series, parallel and mixed R circuits		0%
5	Can analyze and evaluate the concept of direct current electric power, and practice in the laboratory	1. Calculate the amount of DC2 electrical power. calculate DC3 electrical work. calculate DC4 electric heat. Skilled in carrying out practical work in the laboratory to validate electrical power.	Criteria: The test score is obtained by: number of correct answers x 100 then divided by the number of test items	Discussion, providing examples of electrical power problems and assignments in theory class. Practical validation of the R 2 X 50 circuit		0%

6	1. Able to use the mesh current method to solve	1.Calculating the number of	Criteria: The score	Discussion, providing		0%
	problems in complex direct current circuits 2. Skilled in validating	mesh currents, 2.Determines the direction of	obtained by students is the number of correct answers x 100 divided by	examples of solving complex electrical		
	the theory of the mesh current method in the laboratory	the mesh current, 3.Write down the mesh	the number of test items	circuits using the mesh current		
		current equation 4.Calculate the		method and assignments in theory		
		magnitude of each mesh current using elimination		classes. Practical validation of the		
		5.Calculate the magnitude of each mesh		4 X 50 mesh flow method		
		current using a matrix. 6.Calculate the amount of				
		current, voltage, or resistance in the mesh				
		using driving point resistance				
		7.Calculate the amount of current, voltage, or				
		resistance in the mesh using transfer resistance				
		8.Skilled in validating the mesh flow				
		method through practical work in the				
		laboratory				

7	1. Able to use the mesh current method to solve problems in complex direct current circuits 2. Skilled in validating the theory of the mesh current method in the laboratory	 Calculating the number of mesh currents, Determines the direction of the mesh current, Write down the mesh current acquation Calculate the magnitude of each mesh current using elimination Calculate the magnitude of each mesh current using a matrix. Calculate the magnitude of each mesh current using a matrix. Calculate the amount of current, voltage, or resistance in the mesh using driving point resistance Calculate the amount of current, voltage, or resistance Calculate the amount of current, voltage, or resistance Skilled in validating the mesh flow method through practical work in the laboratory 	Criteria: The score obtained by students is the number of correct answers x 100 divided by the number of test items	Discussion, providing examples of solving complex electrical circuits using the mesh current method and assignments in theory classes. Practical validation of the 4 X 50 mesh flow method		0%
8	Explore meetings 3 to 7 regarding basic electrical circuits, electric power, and mesh current methods	1. Correctly solve basic electrical circuit problems 2. Correctly solve DC electrical power problems 3. Correctly solve DC electrical circuit problems using the mesh current method. 4. Skilled in carrying out practical work to validate theory	Criteria: There isn't any	Practice solving basic electrical circuit problems, electrical power, and 2 X 50 mesh current		0%
9	MID SEMESTER EXAMINATION See meetings 1 to 8	See meetings 1 to 8	Criteria: The score is obtained by: the number of items answered is multiplied by 100 then divided by the number of test items.	2 X 50 exam		0%

10	Able to use the	1.Counting the	Criteria:	Discussion,		0%
	node voltage method to solve	number of	The test score is	providing		
	problems in	vertices,	obtained by: the number of test	examples of		
	complex direct	2.Write down	items answered	solving		
	current circuits	the equation of	correctly x 100	complex electrical		
		the vertex	then divided by	circuits		
		Calculate the	the number of test items	using the		
		magnitude of		nodal		
		the voltage at		voltage		
		each node		method and		
		using the node		assignments		
		equation by		in theory		
		elimination.		class.		
		4.Calculate the magnitude of		Practical validation of		
		the voltage at		the		
		each node		4 X 50 nodal		
		using the node		voltage		
		equation in		method		
		matrix form.				
		5.Calculate the				
		magnitude of				
		current,				
		voltage,				
		conductance				
		or resistance				
		at node points				
		using driving				
		point				
		conductance 6.Calculate the				
		amount of				
		current,				
		conductance,				
		or resistance				
		at a node point				
		using the node				
		equation in the				
		form of				
		transfer				
		resistance				
		7.Skilled in				
		validating the				
		node stress				
		method through				
		practical work				
		in the				
		laboratory				
		aboratory				
		1	1		1	

		node voltage method to solve problems in complex direct current circuits	 Counting the number of vertices, Write down the equation of the vertex Calculate the magnitude of the voltage at each node using the node equation by elimination. Calculate the magnitude of the voltage at each node using the node equation in matrix form. Calculate the magnitude of current, voltage, conductance or resistance at node points using driving point conductance Calculate the amount of current, conductance Calculate the amount of current, conductance Calculate the amount of current, conductance, or resistance at a node point using the node equation in the form of transfer resistance Skilled in validating the node stress method through practical work in the laboratory 	The test score is obtained by: the number of test items answered correctly x 100 then divided by the number of test items	providing examples of solving complex electrical circuits using the nodal voltage method and assignments in theory class. Practical validation of the 2 X 50 nodal voltage method			
--	--	--	---	--	---	--	--	--

12	Able to use impedance network analysis solving methods to solve problems in direct current electrical circuits	 Calculating the equivalent resistance for the Thevenins and Norton circuits, Calculate the open circuit voltage (Voc) for the Thevenins circuit. Calculate the short circuit current (Isc) for the Norton circuit, Establish the Thevenins and Nortons equivalent series Understand the triangle-star transformation equation Determine the magnitude of the star from the triangular connection Determine the magnitude of the star from the triangular connection Calculating the amount of 	Criteria: The test score is obtained by: the number of test items answered correctly x 100 then divided by the total number of test items	Discussion, providing examples of solving complex electrical circuits using the R network analysis method, and assignments in theory classes. Practical validation of several R 2 X 50 network analyzes		0%
		amount of electricity caused by several sources working simultaneously 10.Proving the reciprocity theory 11.Proving the compensation theory 12.Calculating series-parallel equivalent cirruits				
		circuits 13.Determine matching requirements 14.Calculate the maximum power transfer 15.Skilled in validating resistance network theory through practical work in the laboratory				
13				2 X 50		0%

	ı		ſ			
14	Able to use impedance network	1.Calculating the	Criteria:	Discussion,		0%
	analysis solving	equivalent	The test score is obtained by: the	providing examples of		
	methods to solve	resistance for	number of test	solving		
	problems in direct current electrical	the Thevenins and Norton	items answered correctly x 100	complex		
	circuits	circuits,	then divided by	electrical		
		2.Calculate the	the total number	circuits		
		open circuit	of test items	using the R		
		voltage (Voc)		network		
		for the		analysis method, and		
		Thevenins		assignments		
		circuit.		in theory		
		3.Calculate the		classes.		
		short circuit		Practical		
		current (Isc)		validation of several R		
		for the Norton circuit,		2 X 50		
		4.Establish the		network		
		Thevenins and		analyzes		
		Nortons				
		equivalent				
		series				
		5.Understand				
		the triangle-				
		star				
		transformation equation				
		6.Determine the				
		magnitude of				
		the impedance				
		of the star				
		from the				
		triangular				
		connection				
		7.Determine the				
		magnitude of the triangle				
		impedance of				
		the star				
		connection.				
		8.Calculating the				
		amount of				
		electricity from				
		a source that works alone				
		9.Calculating the				
		amount of				
		electricity				
		caused by				
		several				
		sources				
		working simultaneously				
		10.Proving the				
		reciprocity				
		theory				
		11.Proving the				
		compensation				
		theory 12.Calculating				
		series-parallel				
		equivalent				
		circuits				
		13.Determine				
		matching				
		requirements				
		14.Calculate the				
		maximum power transfer				
		15.Skilled in				
		validating				
		resistance				
		network theory				
		through				
		practical work				
		in the				
		laboratory				
L				1	1	1

15	Explore meetings 10 to 14 regarding the node voltage method and R resistance network	 Correctly solve circuit problems using the node voltage method Correctly solving DC electrical circuit problems through analysis of the R resistance network Skilled in carrying out practicums to validate theories 	Criteria: calculate the rational amount of activity	Training in solving mesh flow method problems and R 2 X 50 network analysis		0%
16	FINAL EXAMS	See meetings 1 through 15	Criteria: See meetings 1 through 15	2 X 50 test exam		0%

Evaluation Percentage Recap: Project Based Learning

NoEvaluationPercentage0%

Notes

- Learning Outcomes of Study Program Graduates (PLO Study Program) are the abilities possessed by each Study Program graduate which are the internalization of attitudes, mastery of knowledge and skills according to the level of their study program obtained through the learning process.
- The PLO imposed on courses are several learning outcomes of study program graduates (CPL-Study Program) which are used for the formation/development of a course consisting of aspects of attitude, general skills, special skills and knowledge.
- 3. **Program Objectives (PO)** are abilities that are specifically described from the PLO assigned to a course, and are specific to the study material or learning materials for that course.
- 4. **Subject Sub-PO (Sub-PO)** is a capability that is specifically described from the PO that can be measured or observed and is the final ability that is planned at each learning stage, and is specific to the learning material of the course.
- 5. Indicators for assessing ability in the process and student learning outcomes are specific and measurable statements that identify the ability or performance of student learning outcomes accompanied by evidence.
- 6. Assessment Criteria are benchmarks used as a measure or measure of learning achievement in assessments based on predetermined indicators. Assessment criteria are guidelines for assessors so that assessments are consistent and unbiased. Criteria can be quantitative or qualitative.
- 7. Forms of assessment: test and non-test.
- 8. Forms of learning: Lecture, Response, Tutorial, Seminar or equivalent, Practicum, Studio Practice, Workshop Practice, Field Practice, Research, Community Service and/or other equivalent forms of learning.
- 9. Learning Methods: Small Group Discussion, Role-Play & Simulation, Discovery Learning, Self-Directed Learning, Cooperative Learning, Contextual Learning, Project Based Learning, and other equivalent methods.
- 10. Learning materials are details or descriptions of study materials which can be presented in the form of several main points and sub-topics.
- **11. The assessment weight** is the percentage of assessment of each sub-PO achievement whose size is proportional to the level of difficulty of achieving that sub-PO, and the total is 100%.
- 12. TM=Face to face, PT=Structured assignments, BM=Independent study.