

Universitas Negeri Surabaya Faculty of Engineering , Electrical Engineering Education Undergraduate Study Program

Document Code

SEMESTER LEARNING PLAN

								Т					
Courses		CODE		Course	Family	Credit Weight		SEMES	STER	Compilation Date			
Engineering Mathematics II		8320103060			T=3	P=0	ECTS=4.7	7 2		July 18, 2024			
AUTHORIZATION		SP Developer		Cour	Course Cluster Coordinator				Study Program Coordinator				
										Dr. Nu	Dr. Nur Kholis, S.T., M.T.		
Learning model	I	Case Studies											
Program		PLO study prog	gram	that is cha	rged to the c	ourse							
Learning		Program Objectives (PO)											
(PLO)		PLO-PO Matrix											
			P.0										
		PO Matrix at th	e end	l of each lea	arning stage	(Sub-Po))						
			F	P.O				We	ek				
				1 2	2 3 4	5 6	7 8		10	11 12	13	14	15 16
						5 0	1 0	5	10	11 12	10	14	10 10
Short Course Descript	tion	This course disc Differentiation, La discusses the ap	aplace	e Transforma	tion, Fourier S	Series, Z	Transfo	matio	n, and	I Inverse Z	Transform	nation.	In addition, it
Referen	ces	Main :											
		2. K.A. 2. Atter	Strou nboro	ud. 2015. N bugh Mary	Matematika	untuk T tics for	eknik. I	Band	una:	Erlangga	-		yasa Sains. , f Elsevier
		Supporters:											
Support lecturer	ing	Dr. Lilik Anifah, S Yuli Sutoto Nugro											
Week-	eac stag	ch learning ge		Evalu	uation Criteria & Fe			Help Learning, Learning methods, Student Assignments, [Estimated time] ine (Online (online)		Learn mater [Refere]	rials	Assessment Weight (%)	
							fline)			,		,	
(1)		(2)		(3)	(4)		(5)		((6)	(7))	(8)

1	Students are able	Students are	Direct		0%
	to solve Complex Number problems	able to solve the Complex Number problems given	Instruction and Problem Based Learning 3 X 50		
2	Students are able to solve Complex Number problems	Students are able to solve the Complex Number problems given	Direct Instruction and Problem Based Learning 3 X 50		0%
3	Students are able to solve Systems of linear equations, matrices, and determinants problems	Students are able to solve the Systems of linear equations, matrices, and determinants problems given	Direct Instruction and Problem Based Learning 3 X 50		0%
4	Students are able to solve Systems of linear equations, matrices, and determinants problems	Students are able to solve the Systems of linear equations, matrices, and determinants problems given	Direct Instruction and Problem Based Learning 3 X 50		0%
5	Able to solve engineering problems regarding vectors	Students are able to solve the vector problems given	Direct Instruction and Problem Based Learning 3 X 50		0%
6	Students are able to apply integral material in solving given integral problems	Students are able to solve the vector problems given	Direct Instruction and Problem Based Learning 3 X 50		0%
7	Students are able to solve the problems given by Gauss's Divergence Theorem and Stokes' Theorem	Students are able to solve the problems given by Gauss's Divergence Theorem and Stokes' Theorem	Direct Instruction and Problem Based Learning 3 X 50		0%
8	UTS		3 X 50		0%
9	Students are able to explain differentiation, and this knowledge allows them to understand phenomena specific to electrical engineering or information technology.	Students are able to explain differentiation well. Students are able to solve problems using differentiation well and with this knowledge they explain special phenomena in the field of electrical engineering or information technology.	Blended learning 3 X 50		0%

10	Students are able to explain differentiation, and this knowledge allows them to understand phenomena specific to electrical engineering or information technology.	Students are able to explain differentiation well. Students are able to solve problems using differentiation well and with this knowledge they explain special phenomena in the field of electrical engineering or information technology.	Blended learning 3 X 50		0%
11	Students are able to explain the Laplace Transformation well. Students are able to solve problems using the Laplace Transformation well. Students explain the application of the Laplace Transformation in the field of electrical engineering or information technology.	Solving problems using the Laplace Transformation Explains the application of the Laplace Transformation in the fields of Electrical Engineering and Information Technology	Direct learning and Blended learning 3 X 50		0%
12	Students are able to explain the Laplace Transformation well. Students are able to solve problems using the Laplace Transformation well. Students explain the application of the Laplace Transformation in the field of electrical engineering or information technology.	Solving problems using the Laplace Transformation Explains the application of the Laplace Transformation in the fields of Electrical Engineering and Information Technology	Direct learning and Blended learning 3 X 50		0%
13	Students are able to explain the Fourier Series, and this knowledge allows them to understand phenomena specific to electrical engineering or information technology.	Students are able to explain Fourier Series well. Students are able to solve problems using Fourier Series well and explain the application of Fourier Series in the field of electrical engineering or information technology.	Direct Instruction, PBL, and Blended Learning 3 X 50		0%
14	Students are able to explain the Z Transformation, and this knowledge allows them to understand phenomena specific to electrical engineering or information technology.	Students are able to explain the Z Transformation well. Students are able to solve problems using the Z Transformation well. Students are able to explain the application of the Z Transformation in the field of electrical engineering or information technology.	Direct Instruction, PBL, and Blended Learning 3 X 50		0%

15	Students are able to explain the Inverse Z Transformation and its application in electrical engineering or information technology.	Students are able to explain the Inverse Z Transformation well. Students are able to solve problems using the Z Inverse Transformation well	Direct Instructi PBL, an Blended Learning 3 X 50		0%
16	UAS		3 X 50		0%

Evaluation Percentage Recap: Case Study

No	Evaluation	Percentage	
		0%	

Notes

- Learning Outcomes of Study Program Graduates (PLO Study Program) are the abilities possessed by each Study Program graduate which are the internalization of attitudes, mastery of knowledge and skills according to the level of their study program obtained through the learning process.
- 2. The PLO imposed on courses are several learning outcomes of study program graduates (CPL-Study Program) which are used for the formation/development of a course consisting of aspects of attitude, general skills, special skills and knowledge.
- 3. **Program Objectives (PO)** are abilities that are specifically described from the PLO assigned to a course, and are specific to the study material or learning materials for that course.
- Subject Sub-PO (Sub-PO) is a capability that is specifically described from the PO that can be measured or
 observed and is the final ability that is planned at each learning stage, and is specific to the learning material of
 the course.
- 5. **Indicators for assessing** ability in the process and student learning outcomes are specific and measurable statements that identify the ability or performance of student learning outcomes accompanied by evidence.
- 6. Assessment Criteria are benchmarks used as a measure or measure of learning achievement in assessments based on predetermined indicators. Assessment criteria are guidelines for assessors so that assessments are consistent and unbiased. Criteria can be quantitative or qualitative.
- 7. Forms of assessment: test and non-test.
- 8. Forms of learning: Lecture, Response, Tutorial, Seminar or equivalent, Practicum, Studio Practice, Workshop Practice, Field Practice, Research, Community Service and/or other equivalent forms of learning.
- Learning Methods: Small Group Discussion, Role-Play & Simulation, Discovery Learning, Self-Directed Learning, Cooperative Learning, Collaborative Learning, Contextual Learning, Project Based Learning, and other equivalent methods.
- 10. Learning materials are details or descriptions of study materials which can be presented in the form of several main points and sub-topics.
- 11. The assessment weight is the percentage of assessment of each sub-PO achievement whose size is proportional to the level of difficulty of achieving that sub-PO, and the total is 100%.
- 12. TM=Face to face, PT=Structured assignments, BM=Independent study.