

Universitas Negeri Surabaya Faculty of Engineering , Electrical Engineering Education Undergraduate Study Program

Document Code

SEMESTER LEARNING PLAN

Courses			CODE			Cour	se Fai	nilv	Cre	edit V	/eiah	t	SE	MEST	FR	Com	pilation
Courses			CODE			Cour	se rai	iiiiy	CIG		reigii	L	36		LR	Date	Jiation
Advanced En Mathematics	gineering		8320103236				oulsory ram Su	Study bjects	T=:	3 P=	0 E0	CTS=4.77	'	2		July 1	.7, 2024
AUTHORIZAT	TION		SP Develop	er				Cou	rse C	luste	r Coc	ordinator	St	Study Program Coordinator			dinator
			Puput Wanaı Peni, Farid	rti Rusima	mto,	Haps	sari	Pupi	ut Wa	narti I	Rusin	namto		Dr. Nur Kholis, S.T., M.T.			
Learning model	Case Studies																
Program	PLO study pro	grar	n that is charç	ged to the	e co	ourse	•										
Learning Outcomes	PLO-5		le to align the el evant to the den										/ocat	ional e	educati	on that	is
(PLO)	PLO-7	Ab	le to apply appli chnology and ele	ed researd	ch to	inno	vate v	ocation	al lea	rning	meth	, ods, optin		produc	tion pr	ocess	
	PLO-10 Have a responsible character and be committed to professional ethics (General/SSC4.6).																
	Program Objectives (PO)																
	PO - 1	Students are able to explain Complex Numbers, Systems of linear equations, matrices, and determinants, Vectors, Integrals, Differentiation, Laplace Transformation, Fourier Series, Z Transformation, and Inverse Z Transformation. And this knowledge allows them to understand phenomena specific to electrical engineering or information technology.															
	PO - 2	Students are able to work together in solving problems about Complex Numbers, Systems of linear equations, matrices, and determinants, Vectors, Integrals, Differentiation, Laplace Transformation, Fourier Series, Z Transformation, and Inverse Z Transformation. And with this knowledge it is possible for them to understand phenomena specifically for electrical engineering or information technology.															
	PO - 3	Students have extensive knowledge of Complex Numbers, Systems of linear equations, matrices, and determinants, Vectors, Integrals, Differentiations, Laplace Transforms, Fourier Series, Z Transformations, and Inverse Z Transformations. And this knowledge allows them to understand phenomena specific to engineering electricity or information technology.															
	PLO-PO Matrix																
		Γ	P.0	PL	_0-5			PLO-7 PLO-10									
			PO-1														
			PO-2														
			PO-3														
	PO Matrix at th	e er	nd of each lea	rning sta	ge (Sub-	PO)										
		-															
			P.0	- 1 1		1				1	ek						
		-		1 2	3	4	5	6 7	8	9	10	11	12	13	14	15	16
		-	PO-1						_	_							
		-	PO-2						_	_							
			PO-3														
Short	This course disc	2055	es Complex N	umbers 4	Sveti	ems	of line	ar en	lation	s. m	atrice	s, and d	eterr	ninante	s. Ver	tors Ir	ntegrals
Course Description	Differentiation, L discusses the ap	apla	ce Transformat	tion, Four	ier	Serie	s, Z ⁻	ransfo	rmati	on, a	nd Ir	iverse Z	Tra	nsform	ation.	In add	dition, it

Referen	ces Main :						
	Matemat	ika untuk Teknik.		2. Attenboro	ggi Bandung: Rekaya ugh Mary, Mathematics 3		
	Supporters:						
		ł					
Support lecturer			, M.T. tin Tjahyaningtijas, S.S	Si., M.T.			
Week-	Final abilities of each learning stage	Eva	Evaluation		Help Learning, Learning methods, Student Assignments, [Estimated time]		Assessment Weight (%)
	(Sub-PO)	Indicator	Criteria & Form	Offline (offline)	Online (<i>online</i>)	- [References]	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
1	Students are able to solve Complex Number problems	Students are able to solve the Complex Number problems given	Criteria: Criteria: Analytical Rubric Form: Non Test Form of Assessment : Participatory Activities	Direct Instruction and Problem Based Learning 3 X 50	Direct Instruction and Problem Based Learning	Material: Complex Numbers References: 1. Mursita, Danang. 2011. Mathematics for Higher Education Bandung: Science Engineering. 2. Stroud Train. 2015. Mathematics for Engineering. Bandung: Erlangga 2. Attenborough Mary, Mathematics for Electrical Engineering and Computing, f Elsevier Linacre House, Jordan Hill, Oxford, 2003	7%
2	Students are able to solve Complex Number problems	Students are able to solve the Complex Number problems given	Criteria: Criteria: Analytical Rubric Form: Non Test Form of Assessment : Participatory Activities	Direct Instruction and Case Method 3 X 50	Direct Instruction and Case Method	Material: Complex Numbers Library:	7%
3	Students are able to solve Systems of linear equations, matrices, and determinants problems	Students are able to solve the Systems of linear equations, matrices, and determinants problems given	Criteria: Criteria: Analytical Rubric Form: Non Test	Direct Instruction and Case Method 3 X 50	Direct Instruction and Case Method	Material: Linear Equations, Matrices and Determinants Literature:	7%

4	Students are able to solve Systems of linear equations, matrices, and determinants problems	Students are able to solve the Systems of linear equations, matrices, and determinants problems given	Criteria: Criteria: Analytical Rubric Form: Non Test Form of Assessment : Participatory Activities	Direct Instruction and Case Method 3 X 50	- Learning Form: Lecture via vinesa/gc/meet Direct Instruction and Case Method	Material: Linear Equations, Matrices and Determinants References: 1. Mursita, Danang. 2011. Mathematics for Higher Education Bandung: Science Engineering. 2. Stroud Train. 2015. Mathematics for Engineering. Bandung: Erlangga 2. Attenborough Mary, Mathematics for Electrical Engineering and Computing, f Elsevier Linacre House, Jordan Hill, Oxford, 2003	7%
5	Able to solve engineering problems regarding vectors	Students are able to solve the vector problems given	Criteria: Criteria: Analytical Rubric Form: Non Test Form of Assessment : Participatory Activities	Direct Instruction and Case Method 3 X 50	Direct Instruction and Case Method	Material: vectors Library: Material: vector References: 1. Mursita, Danang. 2011. Mathematics for Higher Education Bandung: Science Engineering. 2. KA Stroud. 2015. Mathematics for Engineering. Bandung: Erlangga 2. Attenborough Mary, Mathematics for Electrical Engineering and Computing, f Elsevier Linacre House, Jordan Hill, Oxford, 2003	7%

6	Students are able to apply integral material in solving given integral problems	Students are able to solve the vector problems given	Criteria: Criteria: Analytical Rubric Form: Non Test Form of Assessment : Participatory Activities	Direct Instruction and Case Method 3 X 50	Direct Instruction and Case Method	Material: Integral Literature: 1. Mursita, Danang. 2011. Mathematics for Higher Education Bandung: Science Engineering. 2. KA Stroud. 2015. Mathematics for Engineering. Bandung: Erlangga 2. Attenborough Mary, Mathematics for Electrical Engineering and Computing, f Elsevier Linacre House, Jordan Hill, Oxford, 2003	7%
7	Students are able to solve the problems given by Gauss's Divergence Theorem and Stokes' Theorem	Students are able to solve the problems given by Gauss's Divergence Theorem and Stokes' Theorem	Criteria: 7% Form of Assessment : Participatory Activities	Direct Instruction and Case Method 3 X 50	Direct Instruction and Case Method	Material: Gauss' Divergence Theorem and Stokes' Theorem References: 1. Mursita, Danang. 2011. Mathematics for Higher Education Bandung: Science Engineering. 2. Stroud Train. 2015. Mathematics for Engineering. Bandung: Erlangga 2. Attenborough Mary, Mathematics for Electrical Engineering and Computing, f Elsevier Linacre House, Jordan Hill, Oxford, 2003	7%

							1
8	Students are able to solve the problems given by Gauss's Divergence Theorem and Stokes' Theorem	Students are able to solve the problems given by Gauss's Divergence Theorem and Stokes' Theorem	Criteria: 7% Form of Assessment : Participatory Activities	Direct Instruction and Case Method 3 X 50	Direct Instruction and Case Method	Material: Gauss' Divergence Theorem and Stokes' Theorem References: 1. Mursita, Danang. 2011. Mathematics for Higher Education Bandung: Science Engineering. 2. Stroud Train. 2015. Mathematics for Engineering. Bandung: Erlangga 2. Attenborough Mary, Mathematics for Electrical Engineering and Computing, f Elsevier Linacre House, Jordan Hill, Oxford, 2003	7%
9	Students are able to explain differentiation, and this knowledge allows them to understand phenomena specific to electrical engineering or information technology.	Students are able to explain differentiation well. Students are able to solve problems using differentiation well and with this knowledge they explain special phenomena in the field of electrical engineering or information technology.	Criteria: Criteria: Analytical Rubric Form: Non Test Form of Assessment : Participatory Activities	Case Method 3 X 50	Case Method	Material: Differentiation Literature: 1. Mursita, Danang. 2011. Mathematics for Higher Education Bandung: Science Engineering. 2. Stroud Train. 2015. Mathematics for Engineering. Bandung: Erlangga 2. Attenborough Mary, Mathematics for Electrical Engineering and Computing, f Elsevier Linacre House, Jordan Hill, Oxford, 2003	7%

10	Students are able to explain differentiation, and this knowledge allows them to understand phenomena specific to electrical engineering or information technology.	Students are able to explain differentiation well. Students are able to solve problems using differentiation well and with this knowledge they explain special phenomena in the field of electrical engineering or information technology.	Criteria: Criteria: Analytical Rubric Form: Non Test Form of Assessment : Participatory Activities	Case Method 3 X 50	Case Method	Material: Differentiation Literature: 1. Mursita, Danang. 2011. Mathematics for Higher Education . Bandung: Science Engineering. 2. Stroud Train. 2015. Mathematics for Engineering. Bandung: Erlangga 2. Attenborough Mary, Mathematics for Electrical Engineering and Computing, f Elsevier Linacre House, Jordan Hill, Oxford, 2003	7%
11	Students are able to explain the Laplace Transformation well. Students are able to solve problems using the Laplace Transformation well. Students explain the application of the Laplace Transformation in the field of electrical engineering or information technology.	Solving problems using the Laplace Transformation Explains the application of the Laplace Transformation in the fields of Electrical Engineering and Information Technology	Criteria: Holistic Rubric Form: Non Test Form of Assessment : Participatory Activities	Direct learning and Case Method 3 X 50	Case Method	Material: Laplace Transformation References: 1. Mursita, Danang. 2011. Mathematics for Higher Education Bandung: Science Engineering. 2. Stroud Train. 2015. Mathematics for Engineering. Bandung: Erlangga 2. Attenborough Mary, Mathematics for Electrical Engineering and Computing, f Elsevier Linacre House, Jordan Hill, Oxford, 2003	6%

12	Students are able to explain the Laplace Transformation well. Students are able to solve problems using the Laplace Transformation well. Students explain the application of the Laplace Transformation in the field of electrical engineering or information technology.	Solving problems using the Laplace Transformation Explains the application of the Laplace Transformation in the fields of Electrical Engineering and Information Technology	Criteria: Criteria: Analytical Rubric Form: Non Test Form of Assessment : Participatory Activities	Direct learning and Case Method 3 X 50	Case Method	Material: Laplace Transformation References: 1. Mursita, Danang. 2011. Mathematics for Higher Education Bandung: Science Engineering. 2. Stroud Train. 2015. Mathematics for Engineering. Bandung: Erlangga 2. Attenborough Mary, Mathematics for Electrical Engineering and Computing, f Elsevier Linacre House, Jordan Hill, Oxford, 2003	7%
13	Students are able to explain the Fourier Series, and this knowledge allows them to understand phenomena specific to electrical engineering or information technology.	Students are able to explain Fourier Series well. Students are able to solve problems using Fourier Series well and explain the application of Fourier Series in the fields of electrical engineering or information technology.	Criteria: 7% Form of Assessment : Participatory Activities	Direct Instruction, Case Method 3 X 50	Direct Instruction, Case Method	Atterial: Fourier Series References: 1. Mursita, Danang. 2011. Mathematics for Higher Education Bandung: Science Engineering. 2. Stroud Train. 2015. Mathematics for Engineering. Bandung: Erlangga 2. Attenborough Mary, Mathematics for Electrical Engineering and Computing, f Elsevier Linacre House, Jordan Hill, Oxford, 2003	7%

14	Students are able	Students are	Criteria:	Case	Case Method	Material: Z	7%
	to explain the Z Transformation, and this knowledge allows them to understand phenomena specific to electrical engineering or information technology.	able to explain the Z Transformation well. Students are able to solve problems using the Z Transformation well. Students are able to explain the application of the Z Transformation in the field of electrical engineering or information technology.	Criteria: Analytical Rubric Form: Non Test	Method 3 X 50		Transformation References: 1. Mursita, Danang. 2011. Mathematics for Higher Education Bandung: Science Engineering. 2. Stroud Train. 2015. Mathematics for Engineering. Bandung: Erlangga 2. Attenborough Mary, Mathematics for Electrical Engineering and Computing, f Elsevier Linacre House, Jordan Hill, Oxford, 2003	
15	Students are able to explain the Inverse Z Transformation and its application in electrical engineering or information technology.	Students are able to explain the Inverse Transformation Z well. Students are able to solve problems using the Inverse Transformation Z well	Criteria: Analytical Rubric Form: Non Test Form of Assessment : Participatory Activities	Direct Instruction, Case Method 3 X 50	Direct Instruction, Case Method	Material: Z Transformation References: 1. Mursita, Danang. 2011. Mathematics for Higher Education Bandung: Science Engineering. 2. Stroud Train. 2015. Mathematics for Engineering. Bandung: Erlangga 2. Attenborough Mary, Mathematics for Electrical Engineering and Computing, f Elsevier Linacre House, Jordan Hill, Oxford, 2003	7%

16	Students are able to explain the Inverse Z Transformation and its application in electrical engineering or information technology.	Students are able to explain the Inverse Transformation Z well. Students are able to solve problems using the Inverse Transformation Z well	Criteria: Analytical Rubric Form: Non Test Form of Assessment : Participatory Activities	Direct Instruction, Case Method 3 X 50	Direct Instruction, Case Method	Material: Z Transformation References: 1. Mursita, Danang. 2011. Mathematics for Higher Education Bandung: Science Engineering. 2. Stroud Train. 2015. Mathematics for Engineering. Bandung: Erlangga 2. Attenborough Mary, Mathematics for Electrical Engineering and Computing, f Elsevier Linacre House, Jordan Hill, Oxford, 2003	10%
----	--	--	--	--	------------------------------------	--	-----

Evaluation Percentage Recap: Case Study

	No	Evaluation	Percentage	
I	1.	Participatory Activities	100%	
ſ		-	100%	

Notes

- 1. Learning Outcomes of Study Program Graduates (PLO Study Program) are the abilities possessed by each Study Program graduate which are the internalization of attitudes, mastery of knowledge and skills according to the level of their study program obtained through the learning process.
- The PLO imposed on courses are several learning outcomes of study program graduates (CPL-Study Program) which are used for the formation/development of a course consisting of aspects of attitude, general skills, special skills and knowledge.
- 3. **Program Objectives (PO)** are abilities that are specifically described from the PLO assigned to a course, and are specific to the study material or learning materials for that course.
- 4. **Subject Sub-PO (Sub-PO)** is a capability that is specifically described from the PO that can be measured or observed and is the final ability that is planned at each learning stage, and is specific to the learning material of the course.
- 5. **Indicators for assessing** abilities in the process and student learning outcomes are specific and measurable statements that identify the abilities or performance of student learning outcomes accompanied by evidence.
- 6. Assessment Criteria are benchmarks used as a measure or measure of learning achievement in assessments based on predetermined indicators. Assessment criteria are guidelines for assessors so that assessments are consistent and unbiased. Criteria can be quantitative or qualitative.
- 7. Forms of assessment: test and non-test.
- 8. Forms of learning: Lecture, Response, Tutorial, Seminar or equivalent, Practicum, Studio Practice, Workshop Practice, Field Practice, Research, Community Service and/or other equivalent forms of learning.
- Learning Methods: Small Group Discussion, Role-Play & Simulation, Discovery Learning, Self-Directed Learning, Cooperative Learning, Collaborative Learning, Contextual Learning, Project Based Learning, and other equivalent methods.
- 10. Learning materials are details or descriptions of study materials which can be presented in the form of several main points and sub-topics.
- 11. The assessment weight is the percentage of assessment of each sub-PO achievement whose size is proportional to the level of difficulty of achieving that sub-PO, and the total is 100%.
- 12. TM=Face to face, PT=Structured assignments, BM=Independent study.