

## Universitas Negeri Surabaya Faculty of Engineering , Electrical Engineering Education Undergraduate Study Program

Document Code

## SEMESTER LEARNING PLAN

| Courses                        |                                                 |                                                                                                                                                                                         | CODE                         |                               | Course Family       |                          |                           | v                | Credit Weight         |                 |                 |                    | SEMESTER Compilation         |                  |                    |                      |                     |           |
|--------------------------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------|---------------------|--------------------------|---------------------------|------------------|-----------------------|-----------------|-----------------|--------------------|------------------------------|------------------|--------------------|----------------------|---------------------|-----------|
| Advanced Divited Electronics   |                                                 |                                                                                                                                                                                         |                              | 2252                          |                     | 000                      |                           |                  |                       |                 |                 | 0.15               | GEINE                        |                  | Date               | 8                    |                     |           |
|                                |                                                 |                                                                                                                                                                                         | 8320102253 Comput<br>Program |                               |                     | npuls<br><del>gram</del> | ory S<br><del>Subje</del> | tudy<br>acts     | Jdy T=2 P=0 ECTS=3.18 |                 |                 | 3.18               | 3 July 17, 2024              |                  |                    |                      |                     |           |
| AUTHORIZATION                  |                                                 |                                                                                                                                                                                         | SP Developer                 |                               |                     |                          | Co                        | ourse            | e Clus                | ster C          | oordina         | tor                | Study Program<br>Coordinator |                  |                    |                      |                     |           |
|                                |                                                 |                                                                                                                                                                                         |                              |                               |                     |                          |                           |                  |                       |                 |                 |                    | Dr. Nur Kholis, S.T., M.T.   |                  |                    |                      |                     |           |
| Learning<br>model              | Project Based L                                 | earning                                                                                                                                                                                 |                              |                               |                     |                          |                           |                  |                       |                 |                 |                    |                              |                  |                    |                      |                     |           |
| Program                        | PLO study program that is charged to the course |                                                                                                                                                                                         |                              |                               |                     |                          |                           |                  |                       |                 |                 |                    |                              |                  |                    |                      |                     |           |
| Learning<br>Outcomes<br>(PLO)  | PLO-5                                           | -O-5 Able to align the electrical and electronics engineering training curriculum in vocational education that is relevant to the demands of global industrial development (Education). |                              |                               |                     |                          |                           |                  |                       |                 |                 |                    |                              |                  |                    |                      |                     |           |
|                                | PLO-7                                           | Able to apply applied research to innovate vocational learning methods, optimize production process technology and electrical engineering services relevant to industry (Education).    |                              |                               |                     |                          |                           |                  |                       |                 |                 |                    |                              |                  |                    |                      |                     |           |
|                                | PLO-10                                          | Have a r                                                                                                                                                                                | esponsible                   | e character                   | and b               | e cor                    | nmitte                    | ed to            | profes                | ssion           | al eth          | ics (G             | eneral/S                     | SSC4.            | 6).                |                      |                     |           |
|                                | PLO-13                                          | Able to c<br>(SSC3.1                                                                                                                                                                    | design circı<br>).           | uits, device                  | s and               | prod                     | ucts i                    | n the            | electr                | rical a         | and e           | lectror            | nics engi                    | neerii           | ng expe            | ertise p             | rograi              | m         |
|                                | PLO-14                                          | Able to b<br>electrica                                                                                                                                                                  | become a p<br>I engineeri    | practitioner<br>ng and elec   | who c<br>ctronic    | an a<br>s en             | pply ł<br>ginee           | nis kn<br>ring s | owled<br>kills p      | lge a<br>progra | nd sk<br>am (S  | ills to (<br>SC4.1 | develop<br>L)                | produ            | icts in a          | s in a comprehensive |                     |           |
|                                | Program Object                                  | ctives (PC                                                                                                                                                                              | )                            |                               |                     |                          |                           |                  |                       |                 |                 |                    |                              |                  |                    |                      |                     |           |
|                                | PO - 1                                          | Able to w                                                                                                                                                                               | vork togeth                  | er in solvin                  | g digit             | al cir                   | cuit d                    | esign            | and i                 | imple           | ement           | ation              | oroblem                      | S                |                    |                      |                     |           |
|                                | PO - 2                                          | Able to a                                                                                                                                                                               | pply digita                  | l circuits to                 | gener               | al kn                    | owled                     | lge, s           | ocial                 | and             | huma            | nities             |                              |                  |                    |                      |                     |           |
|                                | PO - 3                                          | Able to a of global                                                                                                                                                                     | lign the ele<br>industrial d | ectronics e<br>developme      | nginee<br>nt        | ering                    | traini                    | ng cu            | Irriculi              | um ir           | n voca          | ational            | educati                      | on tha           | at is rel          | levant t             | vant to the demands |           |
|                                | PO - 4                                          | Have ext<br>digital cir                                                                                                                                                                 | tensive kno<br>cuit proble   | owledge in<br>ms in the e     | the fielectro       | elds<br>nics (           | of ma<br>engin            | athem<br>eering  | natics,<br>g prog     | scie<br>gram    | ence a<br>by fo | and el<br>llowing  | ectrical<br>g scientif       | engin<br>fic wri | eering<br>ting rul | so that<br>es        | you                 | can solv  |
|                                | PLO-PO Matrix                                   | :<br>                                                                                                                                                                                   |                              |                               |                     |                          |                           |                  |                       |                 |                 |                    |                              |                  |                    |                      |                     |           |
|                                |                                                 |                                                                                                                                                                                         |                              |                               |                     |                          | PLO-10 PLO-:              |                  |                       | 13 PLO-14       |                 |                    | 1                            |                  |                    |                      |                     |           |
|                                |                                                 |                                                                                                                                                                                         | PO-1                         |                               |                     |                          |                           |                  |                       |                 |                 |                    |                              |                  |                    |                      |                     |           |
|                                |                                                 |                                                                                                                                                                                         | PO-2                         |                               |                     |                          |                           |                  |                       |                 |                 |                    |                              |                  |                    |                      |                     |           |
|                                |                                                 |                                                                                                                                                                                         | PO-3                         |                               |                     |                          |                           |                  |                       |                 |                 |                    |                              |                  |                    |                      |                     |           |
|                                |                                                 |                                                                                                                                                                                         | PO-4                         |                               |                     |                          |                           |                  |                       |                 |                 |                    |                              |                  |                    |                      |                     |           |
|                                |                                                 |                                                                                                                                                                                         |                              | 4                             |                     |                          |                           |                  |                       |                 |                 |                    | 4                            |                  |                    |                      |                     | I         |
|                                | PO Matrix at the end of each learning stage (S  |                                                                                                                                                                                         |                              |                               |                     | b-PC                     | <b>)</b> )                |                  |                       |                 |                 |                    |                              |                  |                    |                      |                     |           |
|                                |                                                 |                                                                                                                                                                                         | PO                           |                               |                     |                          |                           |                  |                       |                 | Wee             | k                  |                              |                  |                    |                      |                     |           |
|                                |                                                 |                                                                                                                                                                                         | 1.0                          | 1 2                           | 3                   | 4                        | 5                         | 6                | 7                     | 8               | 9               | 10                 | 11                           | 12               | 13                 | 14                   | 15                  | 16        |
|                                |                                                 | PO-1                                                                                                                                                                                    |                              |                               |                     |                          |                           |                  |                       |                 |                 |                    |                              |                  |                    |                      |                     |           |
|                                |                                                 | PO-2                                                                                                                                                                                    |                              |                               |                     |                          |                           |                  |                       |                 |                 |                    |                              |                  |                    |                      |                     |           |
|                                |                                                 | PO-3                                                                                                                                                                                    |                              |                               |                     |                          |                           |                  |                       |                 |                 |                    |                              |                  |                    |                      |                     |           |
|                                |                                                 | PO-4                                                                                                                                                                                    |                              |                               |                     |                          |                           |                  |                       |                 |                 |                    |                              |                  |                    |                      |                     |           |
| Short<br>Course<br>Description | Examines the ba<br>circuits, counters           | sic concept<br>and regist                                                                                                                                                               | pts of digita<br>ters, as we | al engineer<br>ell as their a | ring, lo<br>applica | ogic ç<br>itions         | jates,<br>in ev           | Flip-<br>eryda   | Flops<br>ay life      | , Boo           | olean           | Algeb              | ra, coml                     | pinato           | rial ciro          | cuit des             | ign, s              | sequentia |
| References                     | Main :                                          |                                                                                                                                                                                         |                              |                               |                     |                          |                           |                  |                       |                 |                 |                    |                              |                  |                    |                      |                     |           |

|                     | 1. Barmawi<br>2. Leach, D<br>3. Nur, Mor<br>4. Tocci, Ru<br>Prentice-               | , 1991. Rangkaian dan<br>Ionald. 1997. Digital Pri<br>Iamad. 1977. Sistem D<br>Ionald J. & Widmer, No<br>Hall.                                                                                | Sistem Analog dan Digi<br>nciples and Applications<br>igital: Prinsip dan Pemal<br>eal S. & Moss, Gregory                                                                                                                                 | tal. Jilid 2. Jaka<br>5. Fifth Edition. N<br>kaian. Surabaya<br>7 L. 2011. Digit | rta: Erlangga<br>New York: McGraw-Hill<br>a: Unipress IKIP Surabay<br>al Systems: Principles a | a<br>and Application.                                                                                                                                                                                                                                         | New Jersey:              |
|---------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
|                     | Supporters:                                                                         |                                                                                                                                                                                               |                                                                                                                                                                                                                                           |                                                                                  |                                                                                                |                                                                                                                                                                                                                                                               |                          |
|                     |                                                                                     |                                                                                                                                                                                               |                                                                                                                                                                                                                                           |                                                                                  |                                                                                                |                                                                                                                                                                                                                                                               |                          |
| Support<br>lecturer | Dr. Meini Sondan<br>Dr. Nur Kholis, S.<br>Dr. Lilik Anifah, S<br>Sayyidul Aulia Ala | ig Sumbawati, M.Pd.<br>T., M.T.<br>.T., M.T.<br>amsyah, S.T., M.T.                                                                                                                            |                                                                                                                                                                                                                                           |                                                                                  |                                                                                                |                                                                                                                                                                                                                                                               |                          |
| Week-               | Final abilities of<br>each learning<br>stage                                        | Eval                                                                                                                                                                                          | uation                                                                                                                                                                                                                                    | He<br>Lear<br>Studer<br>[ Es                                                     | Pp Learning,<br>ning methods,<br>nt Assignments,<br>stimated time]                             | Learning<br>materials                                                                                                                                                                                                                                         | Assessment<br>Weight (%) |
|                     | (Sub-PO)                                                                            | Indicator                                                                                                                                                                                     | Criteria & Form                                                                                                                                                                                                                           | Offline(<br>offline)                                                             | Online ( <i>online</i> )                                                                       | 1                                                                                                                                                                                                                                                             |                          |
| (1)                 | (2)                                                                                 | (3)                                                                                                                                                                                           | (4)                                                                                                                                                                                                                                       | (5)                                                                              | (6)                                                                                            | (7)                                                                                                                                                                                                                                                           | (8)                      |
| 1                   | Analyze the<br>properties of logic<br>gates                                         | <ol> <li>Describe the<br/>properties of<br/>logic gates<br/>(logic gates)</li> <li>Simplify logic<br/>circuits with<br/>Boolean<br/>algebra</li> <li>Assembling<br/>logic circuits</li> </ol> | Criteria:<br>1Able to explain<br>logic gates<br>2Able to simplify<br>logic circuits<br>Form of<br>Assessment :<br>Participatory Activities                                                                                                | Lectures,<br>group<br>discussions<br>and<br>reflections<br>2 X 50                |                                                                                                | Material:<br>logic gates<br>and circuit<br>simplification<br><b>References:</b><br>Tocci,<br>Ronald J. &<br>Widmer,<br>Neal S. &<br>Moss,<br>Gregory L.<br>2011. Digital<br>Systems:<br>Principles<br>and<br>Application.<br>New Jersey:<br>Prentice<br>Hall. | 0%                       |
| 2                   | Able to design<br>combinational<br>circuits                                         | Students can carry<br>out simulations<br>regarding<br>combinational<br>circuits                                                                                                               | Criteria:<br>The simulated<br>circuit results are in<br>accordance with the<br>applicable theory<br>Form of<br>Assessment :<br>Project Results<br>Assessment / Product<br>Assessment                                                      | Experiment,<br>Discussion,<br>question and<br>answer<br>2x50                     |                                                                                                | Material:<br>network<br>simplification<br>References:<br>Tocci,<br>Ronald J. &<br>Widmer,<br>Neal S. &<br>Moss,<br>Gregory L.<br>2011. Digital<br>Systems:<br>Principles<br>and<br>Application.<br>New Jersey:<br>Prentice<br>Hall.                           | 0%                       |
| 3                   | Get the standard<br>form of the truth<br>table                                      | <ol> <li>Students can<br/>explain the<br/>standard form<br/>of digital<br/>circuits</li> <li>Students can<br/>formulate<br/>standard forms<br/>of truth tables</li> </ol>                     | Criteria:<br>1.Students can<br>explain the<br>standard form of<br>digital circuits<br>2.Students can<br>formulate<br>standard forms<br>of truth tables<br>Form of<br>Assessment :<br>Participatory<br>Activities, Portfolio<br>Assessment | Lectures,<br>Discussions,<br>Questions<br>and Answers                            |                                                                                                | Material:<br>Standard<br>form POS<br>and SOP<br>References:<br>Tocci,<br>Ronald J. &<br>Widmer,<br>Neal S. &<br>Moss,<br>Gregory L.<br>2011. Digital<br>Systems:<br>Principles<br>and<br>Application.<br>New Jersey:<br>Prentice<br>Hall.                     | 0%                       |
| 4                   | Simplify digital<br>circuits using<br>KMAP                                          | 1 Describe<br>KMAP<br>2Simplify logic<br>circuits with<br>KMAP                                                                                                                                | Criteria:<br>Successfully<br>simplified logic<br>circuits with KMAP<br>Form of<br>Assessment :<br>Participatory Activities                                                                                                                | Experiment,<br>group<br>discussion,<br>and<br>reflection<br>4 X 50               |                                                                                                |                                                                                                                                                                                                                                                               | 0%                       |

| 5  | Simplify digital<br>circuits using<br>KMAP                                                                         | <ol> <li>Describe<br/>KMAP</li> <li>Simplify logic<br/>circuits with<br/>KMAP</li> <li>Simulate<br/>simplified logic<br/>circuits with<br/>KMAP</li> </ol>                    | Criteria:<br>The simulation was<br>successful<br>Form of<br>Assessment :<br>Project Results<br>Assessment / Product<br>Assessment                                      | Experiment,<br>group<br>discussion,<br>and<br>reflection<br>4 X 50   | Material:<br>KMAP<br>Reference:<br>Tocci,<br>Ronald J. &<br>Widmer,<br>Neal S. &<br>Moss,<br>Gregory L.<br>2011. Digital<br>Systems:<br>Principles<br>and<br>Application.<br>New Jersey:<br>Prentice<br>Hall.               | 10% |
|----|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 6  | Students are able<br>to design<br>combinational<br>circuits with real<br>components to<br>create seven<br>segments | Combinational<br>Circuit Design                                                                                                                                               | Criteria:<br>The design can be<br>successfully<br>simulated<br>Form of<br>Assessment :<br>Project Results<br>Assessment / Product<br>Assessment                        | Experiment,<br>group<br>discussion,<br>and<br>reflection<br>4 X 50   | Material:<br>seven<br>segments<br>References:<br>Tocci,<br>Ronald J. &<br>Widmer,<br>Neal S. &<br>Moss,<br>Gregory L.<br>2011. Digital<br>Systems:<br>Principles<br>and<br>Application.<br>New Jersey:<br>Prentice<br>Hall. | 10% |
| 7  | Students are able<br>to design<br>combinational<br>circuits with real<br>components to<br>create seven<br>segments | Active in<br>assembling<br>components                                                                                                                                         | Criteria:<br>Actively discussing<br>and assembling<br>components<br>Form of<br>Assessment :<br>Project Results<br>Assessment / Product<br>Assessment                   | Experiment,<br>group<br>discussion,<br>and<br>reflection<br>4 X 50   | Material:<br>seven<br>segments<br>References:<br>Tocci,<br>Ronald J. &<br>Widmer,<br>Neal S. &<br>Moss,<br>Gregory L.<br>2011. Digital<br>Systems:<br>Principles<br>and<br>Application.<br>New Jersey:<br>Prentice<br>Hall. | 10% |
| 8  | UTS                                                                                                                | <ol> <li>The<br/>combinational<br/>circuit worked<br/>according to<br/>theory</li> <li>able to explain<br/>the circuit used</li> </ol>                                        | Criteria:<br>1.assessment of<br>project results<br>2.activeness in<br>presentation<br>Form of<br>Assessment :<br>Project Results<br>Assessment / Product<br>Assessment | experiment,<br>project<br>presentation<br>2 X 50                     |                                                                                                                                                                                                                             | 10% |
| 9  | Analyzing<br>Encoders                                                                                              | <ol> <li>Describe the<br/>Encoder</li> <li>Assembling<br/>encodersCreate<br/>reports about<br/>encoders</li> </ol>                                                            |                                                                                                                                                                        | Experiment,<br>group<br>discussion,<br>and<br>reflection<br>4 X 50   |                                                                                                                                                                                                                             | 0%  |
| 10 | Analyzing decoders                                                                                                 | - Describe the<br>decoder -<br>Assemble the<br>decoder Create a<br>report about the<br>decoder                                                                                |                                                                                                                                                                        | Experiment,<br>group<br>discussion,<br>and<br>reflection<br>4 X 50   |                                                                                                                                                                                                                             | 0%  |
| 11 | Analyzing<br>Multiplexers and<br>sevensegments                                                                     | - Describe the<br>multiplexer and<br>seven segments -<br>Assemble the<br>multiplexer and<br>seven segments<br>Make a report<br>about the<br>multiplexer and<br>seven segments |                                                                                                                                                                        | Experiments,<br>group<br>discussions<br>and<br>reflections<br>2 X 50 |                                                                                                                                                                                                                             | 0%  |

| 12 | Analyze the<br>properties of FLIP<br>FLOP | - Describe the<br>characteristics of<br>the types of Flip<br>Flop - Analyze the<br>circuit            | Experiment,<br>group<br>discussion,<br>and<br>reflection<br>4 X 50   |  | 0% |
|----|-------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--|----|
| 13 |                                           |                                                                                                       |                                                                      |  | 0% |
| 14 | Analyzing register<br>circuits            | - Describe the<br>properties of<br>register circuits.<br>Design register<br>application circuits      | Experiments,<br>group<br>discussions<br>and<br>reflections<br>2 X 50 |  | 0% |
| 15 | Analyze the<br>counter circuit            | - Describe the<br>properties of the<br>counter circuit.<br>Design the counter<br>application circuit. | Experiments,<br>group<br>discussions<br>and<br>reflections<br>2 X 50 |  | 0% |
| 16 |                                           |                                                                                                       |                                                                      |  | 0% |

## Evaluation Percentage Recap: Project Based Learning

| No | Evaluation                                      | Percentage |
|----|-------------------------------------------------|------------|
| 1. | Project Results Assessment / Product Assessment | 40%        |
|    |                                                 | 40%        |

## Notes

- Learning Outcomes of Study Program Graduates (PLO Study Program) are the abilities possessed by each Study
  Program graduate which are the internalization of attitudes, mastery of knowledge and skills according to the level of their
  study program obtained through the learning process.
- 2. The PLO imposed on courses are several learning outcomes of study program graduates (CPL-Study Program) which are used for the formation/development of a course consisting of aspects of attitude, general skills, special skills and knowledge.
- 3. Program Objectives (PO) are abilities that are specifically described from the PLO assigned to a course, and are specific to the study material or learning materials for that course.
- 4. **Subject Sub-PO (Sub-PO)** is a capability that is specifically described from the PO that can be measured or observed and is the final ability that is planned at each learning stage, and is specific to the learning material of the course.
- 5. Indicators for assessing abilities in the process and student learning outcomes are specific and measurable statements that identify the abilities or performance of student learning outcomes accompanied by evidence.
- Assessment Criteria are benchmarks used as a measure or measure of learning achievement in assessments based on predetermined indicators. Assessment criteria are guidelines for assessors so that assessments are consistent and unbiased. Criteria can be quantitative or qualitative.
- 7. Forms of assessment: test and non-test.
- 8. Forms of learning: Lecture, Response, Tutorial, Seminar or equivalent, Practicum, Studio Practice, Workshop Practice, Field Practice, Research, Community Service and/or other equivalent forms of learning.
- 9. Learning Methods: Small Group Discussion, Role-Play & Simulation, Discovery Learning, Self-Directed Learning,
- Cooperative Learning, Collaborative Learning, Contextual Learning, Project Based Learning, and other equivalent methods. 10. Learning materials are details or descriptions of study materials which can be presented in the form of several main points and sub-topics.
- 11. The assessment weight is the percentage of assessment of each sub-PO achievement whose size is proportional to the level of difficulty of achieving that sub-PO, and the total is 100%.
- 12. TM=Face to face, PT=Structured assignments, BM=Independent study.