

Universitas Negeri Surabaya Faculty of Mathematics and Natural Sciences Data Science Undergraduate Study Program

Document Code

SEMESTER LEARNING PLAN

nodel Program Learning Dutcomes		5	4920203010 SP Develop				Com Prog	pulsor ram S	y Stud ubjects	1				CTS=4.		2 tudy P	rogran	_	uary 2 24 rdinat
Learning nodel Program Learning Dutcomes				oer						Соц	urse	Cluste	er Coo	rdinato	r St	tudy P	rogran	n Cool	rdinat
rodel Program earning Outcomes	Case Studies	F														-	-		
rodel Program earning Dutcomes	Case Studies	1	Riskyana Dewi Intan Puspitasari, M.Kom				Dr.	Dr. Atik WIntarti, M.Kom				Y	Yuliani Puji Astuti, S.Si., M						
earning Dutcomes																			
	PLO study program which is charged to the course																		
	PLO-7	Internalize the spirit of independence, struggle and entrepreneurship																	
	PLO-10	Able to u	use technolo	ogy in	n the fi	ield of	data	scienc	е										
	PLO-17	Masterin	ng mathema	atical a	and st	tatistic	al the	ories r	elated	to dat	a sci	ence							
	Program Objectives (PO)																		
	PO - 1	Students	Students are able to understand the concept of propositional logic and its implementation																
	PO - 2	Students	Students are able to understand the concept of propositional logic and its implementation Students are able to understand the implementation of equivalence, predicates and quantifiers																
	PO - 3	Students	Students are able to understand the imperientation of equivalence, predicates and quantitiers Students are able to understand the concepts of proof and mathematical induction																
	PO - 4	Students	Students are able to understand the concept of sets and functions																
	PO - 5	Students	Students are able to understand the concepts of notation and counting																
	PO - 6	Students understand the basic concepts of graphs																	
	PO - 7	Students understand the basic concept of trees																	
	PLO-PO Matrix																		
	PO Matrix at th	PO-1 PO-2 PO-3 PO-4 PO-5	P.O	1 ·	2	e (Sul 3	b-PO)	5	6	7	8	Week 9			12	13		15	16
		PO-6	i														~		
		PO-7	,															1	1

Course are the basis for an		advanced topics and th	nematics will be studied, in eir applications in the field ght decisions regarding the	of data science	e. In this way, students w		
Referen	ces Main :						
	Supporters:						
	1. Susanna		ematics with Applications, §				
	2. Lewis, H	, Essential Discrete Mat	thematics For Computer So	cience, Princeto	on University Press, 2019		
Support lecturer	Dr. Budi Rahadje Yuliani Puji Astut Harmon Prayogi,	ng, S.Si., M.Si. i, S.Si., M.Si.	1.	Γ		Т	
Week-	Final abilities of each learning stage	Eva	luation	Lear Stude	elp Learning, ming methods, nt Assignments, stimated time]	Learning materials	Assessment Weight (%)
	(Sub-PO)	Indicator	Criteria & Form	Offline(offline)	Online (online)	[References]	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
1	Students understand the concept of logic and its implementation	 Able to explain the concept of propositional logic Able to explain logical operators Be able to explain the truth table Able to distinguish conditional statements Be able to explain the Truth Table Able to implement propositional logic in everyday problems 	Criteria: Non-Test Assignments Form of Assessment : Participatory Activities	Collaborative Learning (Lecture, discussion and question and answer) 3 X 50 minutes		Material: Propositional Logic, Conditional Statements, Operations in Propositional Logic, Truth Tables, and Applications of Propositional Logic : Susanna, S.Epp, Discrete Mathematics with Applications, 5th Edition, Cengage, 2020	5%
2	Students understand the implementation of equivalence of propositions, predicates and quantifiers	 Able to explain the concept of predicate logic Able to explain the concept of Universal & Existential quantifiers Able to explain negation in predicate logic formulas Able to explain translation in predicate logic formulas 	Criteria: Non-Test Assignments Form of Assessment : Participatory Activities	Collaborative Learning (Lecture, discussion and question and answer) 3 X 50 minutes		Material: Predicate logic, Universal Quantifiers, Existential Quantifiers, Negation in predicate logical formulas, and Translation in predicate logical formulas References: Susanna, S.Epp, Discrete Mathematics with Applications, 5th Edition, Cengage, 2020	5%
3	Students understand the concept of nested quantifiers	 Able to explain the concept of nested quantifiers Able to explain translation in nested predicate logic formulas 	Criteria: Individual task Forms of Assessment : Participatory Activities, Practice/Performance, Tests	Collaborative Learning (Lecture, discussion and question and answer) 3 x 50 minutes		Material: Nested quantifiers, translation of quantifiers References: Susanna, S.Epp, Discrete Mathematics with Applications, 5th Edition, Cengage, 2020	5%

4	Students understand the concept of inference rules	 Able to explain the concept of nested quantifiers Able to explain the concept of argument in propositional logic Able to explain the concept of inference rules Able to explain the concepts of Modus Ponens, Modus Tolens, Hypothetical Syllogism, Disjunctive Syllogism, Addition, Simplification, Conjunction, Resolution, Fallacy, 	Criteria: Non-Test Form of Assessment : Participatory Activities	Collaborative Learning (Lecture, discussion and question and answer) 3 X 50 minutes	Material:Arguments in propositional logic, Inference rules, Modus Ponens, Modus Tolens, Hypothetical Syllogism, Disjunctive Syllogism, Addition, Simplification, Conjunction, Resolution, Fallacy, Library: Lewis, H, Essential Discrete Mathematics For Computer Science, Princeton University Press, 2019	5%
5	Students understand the concept of inference rules	Test	Criteria: Quiz Forms of Assessment : Participatory Activities, Practice/Performance, Tests	Collaborative Learning (Lecture, discussion and question and answer) 3 X 50 minutes	Material: Inference Rules in Predicate Logic Bibliography: Lewis, H, Essential Discrete Mathematics For Computer Science, Princeton University Press, 2019	5%
6	Able to understand the concept of proof	 Able to explain the concepts of Lemma, Theorem, Corollary, Conjecture, Able to explain the concept of Trivial Proof Theorem, Vacuous Proof, Direct Proof, Proof by contraposition, Proof by contradiction, Biconditional Proof, Proof by case, Counterexample 	Criteria: Non-Test Form of Assessment : Participatory Activities	Collaborative Learning (Lecture, discussion and question and answer) 3 X 50 minutes	Material: Lemma, Theorem, Corollary, Conjecture, Trivial Proof, Vacuous Proof, Direct Proof, Proof by contradiction, Biconditional Proof, Proof by contradiction, Biconditional Proof, Proof by case, Counterexample Library: Lewis, H, Essential Discrete Mathematics For Computer Science, Princeton University Press, 2019	5%
7	Students are able to understand the concept of mathematical induction	 Able to explain the concept of Deductive Proof Able to explain the Principle of Mathematical Induction 	Criteria: Non-Test Assignments Form of Assessment : Participatory Activities	Collaborative Learning (Lecture, discussion and question and answer) 3 X 50 minutes	Material: Concept of Deductive Proof, Principles of Mathematical Induction Bibliography: Lewis, H, Essential Discrete Mathematics For Computer Science, Princeton University Press, 2019	5%
8	Midterm Exam (UTS)	Written Test Exam	Criteria: Written Exam Form of Assessment : Test	100 minute Offline Written Exam	Material: All material before UTS Library: Susanna, S.Epp, Discrete Mathematics with Applications, 5th Edition, Cengage, 2020	20%

9	Students understand the concept of sets and functions	 Able to explain the concept of Set Able to explain the concept of Function Able to explain the concept of Arithmetic Sequences Able to explain the concept of Geometric Sequences Able to explain Countability Able to explain Uncountable Sets Be able to explain the concept of Set Cardinality 	Criteria: Non-Test Form of Assessment : Participatory Activities	Collaborative Learning (Lecture, discussion and question and answer) 3 X 50 minutes	Function Arithm Seque Geome Seque Cardin Sets, A (Sumn Librar Susan S.Epp, Mathen with Applica Sth Ed	etic ences, etric inces, lality of Addition nation) y: <i>na,</i> <i>Discrete</i> <i>matics</i> <i>ations,</i>	5%
10	Students understand the concept of counting	 Be able to explain the concept of addition rules Able to explain the concept of multiplication rules Able to explain the concept of permutation Able to explain the concept of combination 	Criteria: Task Form of Assessment : Participatory Activities	Collaborative Learning (Lecture, discussion and question and answer) 3 X 50 minutes	multipl rules, permu and combin Refere <i>Susan</i> <i>S.Epp,</i> <i>Mathe</i> <i>with</i> <i>Applica</i> <i>5th Ed</i>	n rules, lication tations nations ence: na, , Discrete matics ations,	5%
11	Students understand the concept of Pigeonhole and binomial	 Able to explain the concept of the Pigeonhole Principle Able to explain the concept of binomials Able to explain the concept of generalization of permutations Able to explain the concept of generalization of combinations 	Criteria: Non-Test Form of Assessment : Participatory Activities	Collaborative Learning (Lecture, discussion and question and answer) 3 X 50 minutes	permu genera combin Refere <i>Lewis</i> , <i>Essen</i> Discre Matheu	hhole ble, ials, alization of tation, alization of nations ences: <i>H</i> , <i>H</i> , <i>tal</i> <i>te</i> <i>matics</i> <i>smputer</i> <i>ce</i> , <i>ton</i> <i>rsity</i>	5%

12	Students understand the concept of generating functions	 Able to explain the concept of generating function Be able to explain the concept of a generating function for a series of binomial coefficients Be able to explain the concept of generating functions for other sequences Be able to explain the properties of generating functions Able to solve recurrence relations with generating functions Able to solve recombinatorics problems with generating functions 	Criteria: Quiz Test Form of Assessment : Participatory Activities, Practice/Performance	Collaborative Learning (Lecture, discussion and question and answer) 3 X 50 minutes	Material: generating functions, generating functions for binomial coefficient sequences, generating functions for other sequences, properties of generating functions, generating functions for recurrence relations with, generating functions for combinatorics problems with References: Susanna, S.Epp, Discrete Mathematics with Applications, Sth Edition, Cengage, 2020	5%
13	Students understand the concept of inclusion-exclusion and recursive principles	 Able to explain the concepts and principles of inclusion- exclusion Able to explain alternative forms of the inclusion- exclusion principle Able to explain the application of the inclusion- exclusion principle Be able to explain the application of the recursive principle 	Criteria: Participation Form of Assessment : Participatory Activities	Collaborative Learning (Lecture, discussion and question and answer) 3 X 50 minutes	Material: inclusion- exclusion principles, alternative forms of the inclusion- exclusion principle, application of the inclusion- exclusion principle, recursive form References: <i>Susanna,</i> <i>S.Epp, Discrete</i> <i>Mathematics</i> <i>with</i> <i>Applications,</i> <i>5th Edition,</i> <i>Cengage, 2020</i>	5%
14	Students understand the concept of graphs	 Able to explain the basic concepts of graphs Able to explain models and types of graphs Able to explain the terminology of graphs Able to explain the representation of graphs Able to explain the shotest-path problems Able to explain the concept of planar graphs Able to explain the concept of graphs coloring 	Criteria: Participation Form of Assessment : Participatory Activities	Collaborative Learning (Lecture, discussion and question and answer) 3 X 50 minutes	Material: basic graph concepts, models and types of graphs, graph terminology, representation of graphs Reference: <i>Susanna,</i> <i>S.Epp, Discrete</i> <i>Mathematics</i> <i>with</i> <i>Applications,</i> <i>5th Edition,</i> <i>Cengage, 2020</i>	5%

15	Students understand the concept of Tree	 Able to explain the concept of trees Able to explain the concept of tree traversal Able to explain the concept of Spanning Tree Able to explain the concept of Minimum Spanning Tree 	Criteria: Non-Test Form of Assessment : Participatory Activities	Collaborative Learning (Lecture, discussion and question and answer) 3 x 50 minutes	Material: tree concept, tree traversal, Spanning Tree, Minimum Spanning Tree, tree applications References: Susanna, S.Epp, Discrete Mathematics with Applications, 5th Edition, Cengage, 2020	5%
16	Final Semester Examination (UAS)	Writing test	Criteria: Final exams Form of Assessment : Test	100 minute Offline Written Exam	Material: All material Library: Susanna, S.Epp, Discrete Mathematics with Applications, 5th Edition, Cengage, 2020	10%

Evaluation Percentage Recap: Case Study

No	Evaluation	Percentage
1.	Participatory Activities	60.84%
2.	Practice / Performance	5.84%
3.	Test	33.34%
		100%

Notes

- Learning Outcomes of Study Program Graduates (PLO Study Program) are the abilities possessed by each Study Program graduate which are the internalization of attitudes, mastery of knowledge and skills according to the level of their study program obtained through the learning process.
- 2. The PLO imposed on courses are several learning outcomes of study program graduates (CPL-Study Program) which are used for the formation/development of a course consisting of aspects of attitude, general skills, special skills and knowledge.
- 3. **Program Objectives (PO)** are abilities that are specifically described from the PLO assigned to a course, and are specific to the study material or learning materials for that course.
- 4. **Subject Sub-PO (Sub-PO)** is a capability that is specifically described from the PO that can be measured or observed and is the final ability that is planned at each learning stage, and is specific to the learning material of the course.
- 5. Indicators for assessing ability in the process and student learning outcomes are specific and measurable statements that identify the ability or performance of student learning outcomes accompanied by evidence.
- 6. Assessment Criteria are benchmarks used as a measure or measure of learning achievement in assessments based on predetermined indicators. Assessment criteria are guidelines for assessors so that assessments are consistent and unbiased. Criteria can be quantitative or qualitative.
- 7. Forms of assessment: test and non-test.
- 8. Forms of learning: Lecture, Response, Tutorial, Seminar or equivalent, Practicum, Studio Practice, Workshop Practice, Field Practice, Research, Community Service and/or other equivalent forms of learning.
- 9. Learning Methods: Small Group Discussion, Role-Play & Simulation, Discovery Learning, Self-Directed Learning, Cooperative Learning, Collaborative Learning, Contextual Learning, Project Based Learning, and other equivalent methods.
- 10. Learning materials are details or descriptions of study materials which can be presented in the form of several main points and sub-topics.
- 11. The assessment weight is the percentage of assessment of each sub-PO achievement whose size is proportional to the level of difficulty of achieving that sub-PO, and the total is 100%.
- 12. TM=Face to face, PT=Structured assignments, BM=Independent study.