

Universitas Negeri Surabaya Faculty of Mathematics and Natural Sciences Data Science Undergraduate Study Program

			SEN	ME:	STI	ER	LE	AR	NI	NG	PL	_Al	1						
Courses		C	ODE	Cours		Course Family		Credit Weight		SEI	SEMESTER			Compilation Date					
Data Mining		49	4920203033 Col			ompu	llsory	Study	y	T=2	T=2 P=1 ECTS=4.77		7	4		July	18, 202		
AUTHORIZAT	ΓΙΟΝ	SI	P Develop	er			rogra	m Súl	, , , , , ,	ourse	Clus	ter C	oordir	ator	Stu	dy Pr	ogran	Coor	dinator
		U	lfa Siti Nur	fa Siti Nuraini				EI	Elly Matul Imah				Yu	Yuliani Puji Astuti, S.Si., M.Si.					
Learning model	Project Base	d Learning																	
Program	PLO study p	PLO study program that is charged to the course																	
Learning Outcomes	PLO-8	Work to	gether and	l have	socia	al sen	sitivity	and I	oring	chang	ge to t	he en	vironn	nent					
(PLO)	PLO-12	Able to databas	ble to design and develop algorithms for various purposes such as big data analysis, artificial intelligence, atabases, data mining, inferential statistics, algorithm design and analysis, and data warehouse.																
	PLO-18	Masterir science	Mastering information technology concepts both in terms of computing and data management to solve data science problems																
	Program Objectives (PO)																		
	PO - 1	Understa	Understand the processes and issues involved in data mining																
	PO - 2	Learn va	Learn various data mining techniques for data streams, series, sequences, text, and web																
	PO - 3 Apply the above techniques to solve data mining problems																		
	PLO-PO Ma	trix																	
			P.O		PLO	D-8		PL	O-12	!	F	PLO-1	.8	1					
			PO-1						/										
			PO-2						/										
			PO-3						•										
	PO Matrix a	t the end of	each lea	rning	ı stad	ae (Si	ub-P	0)											
		T																	
			P.O						_	Ι_	1	Neek	1 40	l	10	l 40		1.5	
		PO-1		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
		PO-2				1	1	1	1	1		1		/	1		1		
		PO-3									1		1			1		1	1

References Main:

1. Han,J., Kamber, M. and J. Pei, Data Mining: Concepts and Techniques. Morgan Kaufmann, 3rd ed., 2011

- 2. Tan, P.-N., Steinbach, M. and Kumar, V., Introduction to Data Mining 2nd edition, Pearson, 2018
- 3. Nisbet, R. and Elder, J., Handbook of Statistical Analysis and Data Mining 2nd edition, Academic Press, 2017
- 4. Zhang, Z., & Zhang, R. Multimedia data mining: a systematic introduction to concepts and theory. CRC Press. 2008

Supporters:

- 1. Han, J., Pei, J., & Tong, H. (2022). Data mining: concepts and techniques. Morgan kaufmann. USA
- 2. Han, J. & Kamber, M. (2006). Data mining concepts and techniques second edition. Morgan Kaufmann Publishers. USA

Supporting lecturer Dr. Wiyli Yustanti, S.Si., M.Kom. Dr. Elly Matul Imah, M.Kom. Ulfa Siti Nuraini, S.Stat., M.Stat.

Week-	Ulfa Siti Nuraini, Final abilities of each learning stage		luation	Leari Studer	lp Learning, ning methods, nt Assignments, timated time]	Learning materials	Assessment Weight (%)	
	(Sub-PO)	Indicator	Criteria & Form	Offline (offline)	Online (online)	[References]	5 ()	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	
1	Students are able to explain the basic concepts of data mining	1.Can explain the basic concepts of data mining 2.Can mention data mining applications in various fields	Criteria: Non Test Form of Assessment : Participatory Activities	Collaborative Learning (Lectures, discussions and questions and answers) 150	Collaborative Learning (Lectures, discussions and questions and answers) Independent Learning 150	Material: - understanding Data Mining (DM), KDD (Knowledge Discovery in Database), AI (Artificial Intelligence), ML (Machine Learning) - Reasons for using DM - Data Types - KDD Process - DM Application - DM Software - DM Method Library: Han, J., Kamber, M. and J. Pei, Data Mining: Concepts and Techniques. Morgan Kaufmann, 3rd ed., 2011	1%	
2	Students are able to carry out data preprocessing	Can perform data preprocessing	Criteria: Non Test Form of Assessment : Participatory Activities	Collaborative Learning (Lectures, discussions and questions and answers) 150	Collaborative Learning (Lectures, discussions and questions and answers) Independent Learning 150	Material: PreProcessing Bibliography: Han, J., Kamber, M. and J. Pei, Data Mining: Concepts and Techniques. Morgan Kaufmann, 3rd ed., 2011	1%	
3	Students are able to explain the introduction to Data Warehouse, OLAP Technology	Can explain the introduction of Data Warehouse and OLAP Technology	Criteria: Non Test Form of Assessment : Participatory Activities	Collaborative Learning (Lectures, discussions and questions and answers) 150	Collaborative Learning (Lectures, discussions and questions and answers) Independent Learning 150	Material: Introduction to Data warehousing and Introduction to OLAP (Online Analytical Processing) References: Han, J., Kamber, M. and J. Pei, Data Mining: Concepts and Techniques. Morgan Kaufmann, 3rd ed., 2011 Material: Data Warehouse References: Han, J., Kamber, M. and J. Pei, Data Mining: Concepts and Techniques. Morgan Kaufmann, 3rd ed., 2011	1%	

4	Students are able to understand the introduction to Data Cube and Data Generalization	Can explain the introduction of Data Warehouse and OLAP Technology	Criteria: Non Test Form of Assessment: Participatory Activities	Collaborative Learning (Lectures, discussions and questions and answers) 150	Collaborative Learning (Lectures, discussions and questions and answers) Independent Learning 150	Material: Data Cube Computation - Data Cube Computation Methods: Multiway Array Aggregation, BUC, Star- Cubing - Multidimensiona References: Han, J., Kamber, M. and J. Pei, Data Mining: Concepts and Techniques. Morgan Kaufmann, 3rd ed., 2011	1%
5	Students are able to understand the Mining Frequent Patterns, Association and Correlations procedures	Can carry out Mining Frequent Patterns, Association and Correlations procedures	Criteria: Non Test Form of Assessment : Participatory Activities, Practical Assessment	Collaborative Learning (Lectures, discussions and questions and answers) 150	Collaborative Learning (Lectures, discussions and questions and answers) Independent Learning 150	Material: Market Based Analysis; Mining Associations rules: Apriori Methods; Recommender System: Collaborative Filtering Bibliography: Han, J., Kamber, M. and J. Pei, Data Mining: Concepts and Techniques. Morgan Kaufmann, 3rd ed., 2011	1%
6	Students are able to explain the conceptual concepts of Mining Stream, Time Series and Sequence Data	1.Can understand the concept of Mining Stream 2.Can understand the concept of Time Series Data 3.Can understand the concept of Sequence data	Criteria: Non Test Form of Assessment : Practical Assessment	Collaborative Learning (Lectures, discussions and questions and answers) 150	Collaborative Learning (Lectures, discussions and questions and answers) Independent Learning 150	Material: Mining concepts in data streams; Mining concepts in time series data; Mining concepts in sequence data References: Han, J., Kamber, M. and J. Pei, Data Mining: Concepts and Techniques. Morgan Kaufmann, 3rd ed., 2011	2%
7	Students are able to explain the concepts of classification and prediction	1.Can understand the concepts of classification and prediction 2.Can carry out classification and prediction methods in real data	Criteria: Non Test Form of Assessment : Participatory Activities	Collaborative Learning (Lectures, discussions and questions and answers) 150	Collaborative Learning (Lectures, discussions and questions and answers) Independent Learning 150	Material: Classification and prediction concepts; Model evaluation and selection References: Han, J., Kamber, M. and J. Pei, Data Mining: Concepts and Techniques. Morgan Kaufmann, 3rd ed., 2011	1%
8	Midterm exam	Midterm exam	Criteria: Writing test Form of Assessment : Test	150 Midterm Exam	150 Midterm Exam	Material: Chapter 1 - Chapter 8 References: Han, J., Kamber, M. and J. Pei, Data Mining: Concepts and Techniques. Morgan Kaufmann, 3rd ed., 2011	20%

9	Students are able to understand the concept of clustering	1.Can understand the concept of clustering analysis 2.Can carry out clustering methods in real data	Criteria: Non Test Form of Assessment : Practical Assessment	Collaborative Learning (Lectures, discussions and questions and answers) 150	Collaborative Learning (Lectures, discussions and questions and answers) Independent Learning 150	Material: Conceptual of Clustering Analysis, Partitioning methods, Hierarchical Methods, Grid- Based Methods, Evaluation of Clustering Literature: Han, J., Kamber, M. and J. Pei, Data Mining: Concepts and Techniques. Morgan Kaufmann, 3rd ed., 2011	3%
10	Students can implement data mining on real problems and realize creative ideas related to data mining and present the results of scientific analysis	1.Can explain creative data mining ideas from real problems 2.Realizing ideas from projects that have been given	Criteria: Test Form of Assessment: Project Results Assessment / Product Assessment	Presentations, Questions and Answers 150	Discussion on LMS 150	Material: Developing research questions, literature study, library method design:	10%
11	Students are able to understand the concepts of Graph Mining and Social Network Analysis	1.Can understand the concept of Graph Mining 2.Can understand the concept of Social Network Analysis	Criteria: Non Test Form of Assessment : Participatory Activities	Collaborative Learning (Lectures, discussions and questions and answers) 150	Collaborative Learning (Lectures, discussions and questions and answers) Independent Learning 150	Material: Graph pattern mining - statistical modeling of networks - data cleaning, integration, and validation by network analysis - clustering and classification of graphs - homogeneous and heterogeneous networks References: Han, J., Kamber, M. and J. Pei, Data Mining: Concepts and Techniques. Morgan Kaufmann, 3rd ed., 2011	1%
12	Students are able to understand the concepts of Mining Objects, Spatial and Multimedia Data	Can understand the concepts of Mining Object, Spatial and Multimedia Data	Criteria: Non Test Form of Assessment : Participatory Activities	Collaborative Learning (Lectures, discussions and questions and answers) 150	Collaborative Learning (Lectures, discussions and questions and answers) Independent Learning 150	Material: The concept of mining objects: movement patterns of multiple moving objects - The concept of mining on spatial data, and spatiotemporal data, and spatiotemporal data - The concept of mining on multimedia data: text, image, video, and audio data References: Han, J., Kamber, M. and J. Pei, Data Mining: Concepts and Techniques. Morgan Kaufmann, 3rd ed., 2011	1%

_	Т		T	1		1	
13	Students can implement data mining on real problems and realize creative ideas related to data mining and present the results of scientific analysis	1.Can explain the progress of realizing creative data mining ideas from real problems 2.Realizing creative ideas scientifically	Criteria: Test Form of Assessment: Project Results Assessment / Product Assessment	Presentations, Questions and Answers 150	Discussion on LMS 150	Material: - Method Implementation - Results Analysis - Conclusion Literature:	10%
14	Students are able to understand the conceptual framework related to Mining Text and Mining Web Data.	1.Can explain the concept of text mining 2.Can explain the concept of web data mining 3.Can apply text and web data mining to real cases	Criteria: Non Test Form of Assessment: Practical Assessment	Collaborative Learning (Lectures, discussions and questions and answers) 150	Collaborative Learning (Lectures, discussions and questions and answers) Independent learning 150	Material: Text mining: Text categorization, text clustering, sentiment analysis, document summarization, and entity - relation modeling - Mining Web data: web content mining, web structure mining, and web usage mining References: Han, J., Kamber, M. and J. Pei, Data Mining: Concepts and Techniques. Morgan Kaufmann, 3rd ed., 2011	2%
15	Students can implement data mining on real problems and realize creative ideas related to data mining and present the results of scientific analysis	1.Can explain the progress of realizing creative data mining ideas from real problems 2.Realizing creative ideas scientifically	Criteria: Test Form of Assessment : Project Results Assessment / Product Assessment	Presentations, Questions and Answers 150	Discussion on LMS 150	Material: Method Implementation - Results Analysis - Conclusion Literature:	15%
16	Students can implement data mining on real problems and realize creative ideas related to data mining and present the results of scientific analysis	Presentation and question and answer	Criteria: Test Form of Assessment: Project Results Assessment / Product Assessment, Portfolio Assessment	Presentations, Questions and Answers 150	Upload Final Report in LMS 150	Material: Chapter 1 - Chapter 11 References: Han, J., Kamber, M. and J. Pei, Data Mining: Concepts and Techniques. Morgan Kaufmann, 3rd ed., 2011	30%

Evaluation Percentage Recap: Project Based Learning

LVU	Evaluation i crocintage recoup. I roject Basea Ecarning								
No	Evaluation	Percentage							
1.	Participatory Activities	7.5%							
2.	Project Results Assessment / Product Assessment	50%							
3.	Portfolio Assessment	15%							
4.	Practical Assessment	7.5%							
5.	Test	20%							
		100%							

Notes

- Learning Outcomes of Study Program Graduates (PLO Study Program) are the abilities possessed by each Study
 Program graduate which are the internalization of attitudes, mastery of knowledge and skills according to the level of their
 study program obtained through the learning process.
- study program obtained through the learning process.
 The PLO imposed on courses are several learning outcomes of study program graduates (CPL-Study Program) which are used for the formation/development of a course consisting of aspects of attitude, general skills, special skills and knowledge.

- 3. **Program Objectives (PO)** are abilities that are specifically described from the PLO assigned to a course, and are specific to the study material or learning materials for that course.
- 4. **Subject Sub-PO (Sub-PO)** is a capability that is specifically described from the PO that can be measured or observed and is the final ability that is planned at each learning stage, and is specific to the learning material of the course.
- 5. **Indicators for assessing** ability in the process and student learning outcomes are specific and measurable statements that identify the ability or performance of student learning outcomes accompanied by evidence.
- Assessment Criteria are benchmarks used as a measure or measure of learning achievement in assessments based on
 predetermined indicators. Assessment criteria are guidelines for assessors so that assessments are consistent and
 unbiased. Criteria can be quantitative or qualitative.
- 7. Forms of assessment: test and non-test.
- 8. Forms of learning: Lecture, Response, Tutorial, Seminar or equivalent, Practicum, Studio Practice, Workshop Practice, Field Practice, Research, Community Service and/or other equivalent forms of learning.
- Learning Methods: Small Group Discussion, Role-Play & Simulation, Discovery Learning, Self-Directed Learning, Cooperative Learning, Collaborative Learning, Contextual Learning, Project Based Learning, and other equivalent methods.
- 10. Learning materials are details or descriptions of study materials which can be presented in the form of several main points and sub-topics.
- 11. The assessment weight is the percentage of assessment of each sub-PO achievement whose size is proportional to the level of difficulty of achieving that sub-PO, and the total is 100%.
- 12. TM=Face to face, PT=Structured assignments, BM=Independent study.