

Universitas Negeri Surabaya Faculty of Mathematics and Natural Sciences Data Science Undergraduate Study Program

Document Code

SEMESTER LEARNING PLAN

Courses				CODE			0		Form	ib.		C.	odit M	loight		SEA	AESTE			ompilation
Courses			CODE	CODE			burse	se Family			Cr	Credit Weight			SEN	MESTE	ĸ		ompilation ate	
Basic Ca	alculus			4920203002	2							T=	3 P=	0 EC	TS=4.77		1			pril 26,)23
AUTHORIZATION			SP Develop	SP Developer					Cou	rse C	luster	Coord	linator	Stu	dy Pro	gram C	coord	inator		
				Atik Wintarti							Atik	Winta	rti			Y	uliani F	^p uji Astu	uti, S.	Si., M.Si.
Learning	j model	Case Studies																		
Program		PLO study prog	gram which is charged to the course																	
Learning Outcom		PLO-17	М	astering mathem	natical	and st	tatistica	al theo	ories	relate	ed to d	lata so	cience							
(PLO)		Program Objec	tive	es (PO)																
		PO - 1	Ab	le to demonstrat	te kno	wledge	e and i	nsight	into	differ	entials	s and	integra	als as t	hey rela	te to c	lata sci	ience		
		PO - 2	Ab	le to design solu	utions	to prol	olems r	regard	ling c	liffere	entials	and ir	ntegra	ls usin	g techno	logica	l assist	tance		
		PO - 3	Ab	le to solve probl	ems r	egardi	ng diffe	erentia	al and	d inte	gral in	deper	ndently	/						
		PLO-PO Matrix	1																	
								-												
				P.0		PLO	-17													
				PO-1																
				PO-2																
				PO-3																
		PO Matrix at th	e e	nd of each lea	rning	stage	e (Sub	-PO)												
				P.0									Wee	k						
					1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
				PO-1																
				PO-2																
				PO-3																
						1 1									1			1		
Short Co Descript		Examining the re and their derivativ as well as detern answer methods	ves, nini	, limits of indeter ng the sequence	rminat e and	e form	is, Tayl ence o	lor and f a fui	d Ma nctio	c Lai n thre	irin se ough a	eries, a active	annlvir	na thes	e conce	nts to	maxim	um pro	blem	s- minimum
Referen	ces	Main :																		
		 Thomas Purcell, E Abadi, & Moesono 	Jr., ∃. J. Wir), D	016. Calculus: E G., et. al. 2014. . et al. 2010. Kall ntarti, A. 2014. K . 1994. Kalkulus Kalkulus Diferens	Thom kulus alkulu I (Edi	ias 19 Jilid 1 is, Buk si Revi	Calculı Edisi K tu 1 (in isi) . Sı	us Eai Cedela press urabay	rly Tr pan 6). Su /a: U	ansc (Terje Irabay nivers	enden emaha /a sity Pr	tal 13 in) . Ja ress S	th Edit akarta urabay	tion . B : Erlan ya.	gga		n-Wesk	ey		
		Supporters:																		
Support lecturer		Dr. Atik Wintarti, I Hasanuddin Al-Ha Riskyana Dewi In	abik	, M.Si.	Kom.															
Week-	learnir	bilities of each			Evaluation					Help Learning, Learning methods, Student Assignments, [Estimated time]				Learning materials			Assessment Weight (%)			
	(Sub-P	(0)		Indicator		Criteria & Form					fline (Online (<i>online</i>) fline)				[References]					

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
1	Understand the real number system and inequalities, .	 Explain the properties of real numbers. Solve inequalities and get solutions on the set of real numbers. 	Criteria: Question and answer Form of Assessment : Participatory Activities	Collaborative Learning (Lectures, discussions and questions and answers) 3 X 50	Collaborative Learning (Lectures, discussions and questions and answers) Independent Learning 3 x 50	Material: Real Number System References: Stewart, J. 2016. Calculus: Early Transcendental 8th Edition . Belmont: Brooks/Cole	2%
2	Understanding Real Functions, Domains and Ranges of Functions, Function Graphs, Composition and Inverse Functions.	 Determining the Function Domain and Range Types and Operation of Functions Drawing Function Graphs Find the condition that two functions are mutually inverse Transforming functions through function composition Use Maple to determine domains, ranges of functions, graphs, composition and inverse functions. 	Criteria: Performance and Tests Form of Assessment : Participatory Activities, Practice/Performance	Collaborative approach (discussion and expository) 3 X 50	Collaborative approach (discussion and expository) Asynchronous or Synchronus Discussion forum Practical assignments 3 x 50	Material: • Real Function S • Function Domains and Ranges • Function Types and Operations • Function Graphs • Function Graphs • Function Inverses • Function Inverses • Function Inverses • Function S References: Thomas Jr., G., et. al. 2014. Thomas 19 Calculus Early Transcendental 13th Edition . Boston: Addison- Wesley	2%
3	 Demonstrate knowledge and insight about Function Limits and Continuity of a function at a point Designing problem solving regarding Function Limits and Continuity of a function at a point in problem solving activities using technology 	 Determining the limit of the function at a point Determining whether a function is continuous or discontinuous at a point c Defines a new function for a discontinuous function that can be eliminated Using technology to solve limit and continuity problems of a function 	Criteria: Oral test Form of Assessment : Participatory Activities	Collaborative approach (discussion and expository) Discussion 3 X 50	Collaborative approach (discussion and expository) Asynchronus or Synchronus Discussion forum	Material: Function limits around point c Reference: Thomas Jr., G., et. al. 2014. Thomas 19 Calculus Early Transcendental 13th Edition . Boston: Addison- Wesley	2%
4	 Demonstrate knowledge and insight into Derivatives of Functions Designing problem solving regarding Function Derivatives in problem solving activities using technology 	 Determining the limit of the function at a point. Determining whether a function is continuous or discontinuous at a point. Defines a new function for a discontinuous function that can be eliminated. Using applications to determine the limits and continuity of a function 	Criteria: Quantitative and Test Forms of Assessment : Participatory Activities, Practical Assessment, Practical / Performance	Collaborative approach (discussion and expository) 3 X 50	Collaborative approach (discussion and expository) Asynchronus or Synchronus Discussion forum 3 x 50	Material: Function Limits Library: Abadi, & Wintarti, A. 2014. Calculus, Book 1 (in press). Surabaya	5%

5	Understanding Function Limits and Continuity of a function at a point	 Determining the limit of the function at a point. Determining whether a function is continuous or discontinuous at a point. Defines a new function for a discontinuous function that can be eliminated. Using Maple to determine the limits and continuity of a function 	Criteria: Quantitative and Test Form of Assessment : Participatory Activities, Practice/Performance	Collaborative approach (discussion and expository) Problem solving assignments in 3 X 50 Student Worksheets	Collaborative approach (discussion and expository) Asynchronus or Synchronus Discussion forum	Material: Derivatives and their applications References: <i>Purcell, EJ et al.</i> 2010. <i>Calculus</i> <i>Volume 1 Eighth</i> <i>Edition</i> (<i>Translation</i>). <i>Jakarta: Erlangga</i>	2%
6	 Demonstrate knowledge and insight about critical points, extreme points and inflection points and be able to solve maximum/minimum problems Designing problem solving regarding critical points, extreme points and turning points and being able to solve maximum/minimum problems in problem solving activities using technology 	 Determining the critical point of the function Determine extreme points and turning points Can determine rising curves, falling curves, and concavity of functions through first and second derivative tests Model and solve max/min problems and function derivative applications using technology 	Criteria: Quantitative and Test Forms of Assessment Participatory Activities, Practical Assessment, Practical / Performance	Collaborative Learning Approach (Lecture, discussion and question and answer) 3 X 50	Collaborative approach (discussion and expository) Asynchronus or Synchronus Discussion forum 3 X 50	Material: • Interval end points, stationary points, and singular points as critical points. • Extreme points and inflection points • Rising curves, falling curves, falling curves, falling curves, falling and solving maximum/minimum problems. Bibliography: Thomas Jr., G., et. al. 2014. Thomas 19 Calculus Early Transcendental 13th Edition . Boston: Addison- Wesley	5%
7	 Demonstrate knowledge and insight into Limits of Indefinite Forms and L'Hôpital's Theorem Designing problem solving regarding Limits of Indeterminate Forms and L'Hôpital's Theorem in problem solving activities using technology 	 Solving derivative problems of various functions including implicit functions. Can use the chain rule to solve derivatives of functions. 	Criteria: Quantitative and Test Form of Assessment : Participatory Activities, Practice/Performance	Collaborative Learning Approach (Lecture, discussion and question and answer) 3 X 50	Collaborative approach (discussion and expository) Asynchronus or Synchronus Discussion forum 3 x 50	Material: • Taylor series of a function, • Mac Laurin series of a function, Reference: Thomas Jr., G., et. al. 2014. Thomas 19 Calculus Early Transcendental 13th Edition . Boston: Addison- Wesley	2%
8	Midterm exam	Midterm exam	Criteria: writing test Form of Assessment : Participatory Activities, Tests	Midterm Exam 3 X 50	Midterm Exam 3 x 50	Material: - Bibliography: Thomas Jr., G., et. al. 2014. Thomas 19 Calculus Early Transcendental 13th Edition . Boston: Addison- Wesley	20%

9	Understand critical points, extreme points and turning points and be able to solve maximum/minimum problems	 Determining the critical point of the function Determine extreme points and turning points Can determine rising curves, falling curves and concavity of functions through first and second derivative tests Modeling and solving max/min problems Using Maple to determine the limits and continuity of a function 	Criteria: Quantitative and Test Form of Assessment : Participatory Activities	Collaborative Learning Approach (Lecture, discussion and question and answer) 3 X 50	Collaborative approach (discussion and expository) Asynchronus or Synchronus Discussion forum 1 x 50	Material: Indefinite Intergral Reference: Thomas Jr., G., et. al. 2014. Thomas 19 Calculus Early Transcendental 13th Edition . Boston: Addison- Wesley	2%
10	Understand critical points, extreme points and turning points and be able to solve maximum/minimum problems	 Determining the critical point of the function Determine extreme points and turning points Can determine rising curves, falling curves and concavity of functions through first and second derivative tests Modeling and solving max/min problems Using applications to determine the limits and continuity of a function 	Criteria: Quantitative and Test Form of Assessment : Participatory Activities, Practice/Performance	Collaborative Learning Approach (Lecture, discussion and question and answer) 4 X 50	Collaborative approach (discussion and expository) Asynchronus or Synchronus Discussion forum	Material: Integral necessarily References: Thomas Jr., G., et. al. 2014. Thomas 19 Calculus Early Transcendental 13th Edition . Boston: Addison- Wesley	5%
11	Understand critical points, extreme points and turning points and be able to solve maximum/minimum problems	 Determining the critical point of the function Determine extreme points and turning points Can determine rising curves, falling curves, falling curves and concavity of functions through first and second derivative tests Modeling and solving max/min problems Using applications to determine the limits and continuity of a function 	Criteria: Question and answer Form of Assessment : Participatory Activities, Practice/Performance	Collaborative Learning Approach (Lecture, discussion and question and answer) 4 X 50	Collaborative approach (discussion and expository) Asynchronus or Synchronus Discussion forum	Material: Integral necessarily References: Thomas Jr., G., et. al. 2014. Thomas 19 Calculus Early Transcendental 13th Edition . Boston: Addison- Wesley	2%

12	Limits of indefinite forms and L'hôpital's Theorem	 Determine the area above the coordinate axes Determine the area under the coordinate axes Determine the area between two curves. Solve problems that involve critical thinking skills related to the area under the curve 	Criteria: Solve problems related to definite integrals Forms of Assessment : Participatory Activities, Project Results Assessment / Product Assessment, Practices / Performance	Collaborative Learning Approach (Lecture, discussion and question and answer) 4 X 50	Collaborative approach (discussion and expository) Asynchronus or Synchronus Discussion forum	Material: Problems related to definite integrals References: Differential Calculus Lecturer Team. 2015. Differential Calculus Practical Module (in press). Surabaya	6%
13	Limits of indefinite forms and L'hôpital's Theorem	 Determine the area above the coordinate axes Determine the area under the coordinate axes Determine the area between two curves. Solve problems that involve critical thinking skills related to the area under the curve 	Criteria: Solve problems related to definite integrals Forms of Assessment Participatory Activities, Project Results Assessment / Product Assessment, Practices / Performance	Collaborative Learning Approach (Lecture, discussion and question and answer) 3 X 50	Collaborative approach (discussion and expository) Asynchronus or Synchronus Discussion forum 3 x 50	Material: Problems related to definite integrals References: Differential Calculus Lecturer Team. 2015. Differential Calculus Practical Module (in press). Surabaya	5%
14	Designing problem solving regarding integrals to determine the center of mass in problem solving activities using technology	 Determine the area above the coordinate axes Determine the area under the coordinate axes Determine the area between two curves. Solve problems that involve critical thinking skills related to the area under the curve 	Criteria: Solve problems related to definite integrals Forms of Assessment : Participatory Activities, Project Results Assessment / Product Assessment, Practices / Performance	Collaborative Learning Approach (Lecture, discussion and question and answer) Problem Based Learning 3 X 50	Collaborative approach (discussion and expository) Asynchronus or Synchronus Discussion forum 3 x 50	Material: Problems related to definite integrals References: Differential Calculus Lecturer Team. 2015. Differential Calculus Practical Module (in press). Surabaya	5%
15	Designing problem solving regarding integrals to determine the center of mass in problem solving activities using technology	 Determine the area above the coordinate axes Determine the area under the coordinate axes Determine the area between two curves. Solve problems that involve critical thinking skills related to the area under the curve 	Criteria: Solve problems related to definite integrals Forms of Assessment : Participatory Activities, Project Results Assessment / Product Assessment, Practices / Performance	Collaborative Learning Approach (Lecture, discussion and question and answer) Problem Based Learning 3 X 50	Collaborative approach (discussion and expository) Asynchronus or Synchronus Discussion forum 3 x 50	Material: Problems related to definite integrals References: Differential Calculus Lecturer Team. 2015. Differential Calculus Practical Module (in press). Surabaya	5%

16	Present the results of work on solving problems related to integrals	Presentation and question and answer		Presentation 3 X 50	Presentation 3 x 50	Material: Application of integrals References: Thomas Jr., G., et. al. 2014. Thomas 19 Calculus Early Transcendental 13th Edition . Boston: Addison- Wesley Material: Application of integrals References: Abadi, & Wintarti, A. 2014. Calculus, Book 1 (in press). Surabaya	30%
----	---	--	--	------------------------	------------------------	--	-----

Evaluation Percentage Recap: Case Study

No	Evaluation	Percentage
1.	Participatory Activities	42.85%
2.	Project Results Assessment / Product Assessment	17.01%
3.	Portfolio Assessment	10%
4.	Practical Assessment	3.34%
5.	Practice / Performance	16.85%
6.	Test	10%
		100%

Notes

- 1. Learning Outcomes of Study Program Graduates (PLO Study Program) are the abilities possessed by each Study Program graduate which are the internalization of attitudes, mastery of knowledge and skills according to the level of their study program obtained through the learning process.
- The PLO imposed on courses are several learning outcomes of study program graduates (CPL-Study Program) which are used for the formation/development of a course consisting of aspects of attitude, general skills, special skills and knowledge.
 Program Objectives (PO) are abilities that are specifically described from the PLO assigned to a course, and are specific to the study
- 3. **Program Objectives (PO)** are abilities that are specifically described from the PLO assigned to a course, and are specific to the study material or learning materials for that course.
- 4. **Subject Sub-PO** (Sub-PO) is a capability that is specifically described from the PO that can be measured or observed and is the final ability that is planned at each learning stage, and is specific to the learning material of the course.
- 5. Indicators for assessing ability in the process and student learning outcomes are specific and measurable statements that identify the ability or performance of student learning outcomes accompanied by evidence.
- Assessment Criteria are benchmarks used as a measure or measure of learning achievement in assessments based on predetermined indicators. Assessment criteria are guidelines for assessors so that assessments are consistent and unbiased. Criteria can be quantitative or qualitative.
- 7. Forms of assessment: test and non-test.
- 8. Forms of learning: Lecture, Response, Tutorial, Seminar or equivalent, Practicum, Studio Practice, Workshop Practice, Field Practice, Research, Community Service and/or other equivalent forms of learning.
- 9. Learning Methods: Small Group Discussion, Role-Play & Simulation, Discovery Learning, Self-Directed Learning, Cooperative Learning, Collaborative Learning, Contextual Learning, Project Based Learning, and other equivalent methods.
- 10. Learning materials are details or descriptions of study materials which can be presented in the form of several main points and subtopics.
- 11. The assessment weight is the percentage of assessment of each sub-PO achievement whose size is proportional to the level of difficulty of achieving that sub-PO, and the total is 100%.
- 12. TM=Face to face, PT=Structured assignments, BM=Independent study.