

Universitas Negeri Surabaya Faculty of Mathematics and Natural Sciences Data Science Undergraduate Study Program

Document Code

SEMESTER LEARNING PLAN

ses			CODE		Course Fami	У	Cred	it We	ight	SEMESTER	Compilation Date
cial Inte	lligence		4920203014			•	T=2	P=1	ECTS=4.77	3	March 27, 2022
IORIZA	ΓΙΟΝ		SP Developer			Course	Clu	ster C	oordinator	Study Program	Coordinator
			Dr. Elly Matul II	nah, M.Kom						Yuliani Puji Ast	uti, S.Si., M.Si.
ing I	Project Based L	earnin	g								
ram	PLO study pro	gram t	hat is charged	to the cou	rse						
ning omes	PLO-11 Able to implement data science technolog				chnology in real	problems	5				
)	PLO-18	Maste proble	ering information ems	technology o	concepts both in	terms of	com	puting	and data ma	nagement to solve	e data science
	Program Object	tives	(PO)								
	PO - 1	Stude	udents are able to explain the basic concepts of intelligent and a					autor	iomous agent	s	
	PO - 2	Students are able to apply the state-space-search thinking framework, both uninformed and informed a problem, and design and implement it to solve the problem							search, to model		
	PO - 3	Students are able to apply local-search to overcome complexity problems in state-space-search									
	PO - 4	Stude	ents are able to a	oply adversa	rial-search to de	etermine	optim	izatio	n strategies		
	PO - 5	Stude	ents are able to a	oply techniqu	ues for solving c	onstraint	satis	factio	n problems		
	PO - 6	Stude carry	ents are able to u out reasoning on	se logic as a these repres	a knowledge rep sentations	resentatio	on la	nguag	le to model a	spects of the real	world, as well as
	PO - 7	Stude learni	nts are able to a ng from data	pply the prin	ciples of decisio	n making) bas	ed on	modeling and	l probabilistic reas	oning as well as
	PO - 8	Stude	ents are able to ex	xplain approa	aches to designi	ng multi-	agen	t syste	ems		
	PO - 9	Stude	ents are able to de	esign probler	m solutions usin	g artificia	l inte	lligend	ce techniques		
	PLO-PO Matrix	[
			P.0	PLO-11	PLO-1	8					
			PO-1								
			PO-2								
			PO-3								
			PO-4								
			PO-5								
			PO-6								
			PO-7								
		PO-8									
			PO-9								
					I]					
	PO Matrix at th	e end	of each learnir	na stage (S	ub-PO)						
	. • matrix at th	o ond	e. ouon iourini	.9 omge (0							

				P.0									Wee	k						
					1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
				PO-1																
				PO-2																
				PO-3																
				PO-4																
				PO-5																
				PO-6																
				PO-7																
				PO-8																
				PO-9																
Short Course Descrip	tion	This course introd the field of artific basics of develop agents; modeling informed/heuristic representation an and ethical issues	duc ial ping te c s nd re s of	es the basic con- intelligence. Lect g intelligent and cchniques and fi- eearch, local se easoning, probat artificial intellige	cepts auto auto ndin arch bilistio nce.	s of ar partici nomo g solu , adv c appr	tificia pants us ag utions versar oach	intell will b ents. to a ial se to dee	igenc De eq Topio vario earch cision	e as v uippe cs dis ety of , con maki	well as d with cusse f prob istrain ng, ma	s varie theo d inc lems t sat achine	ous aj retica lude t in in isfacti e leari	pproac l under he cor telliger on pr ning, m	hes an rstandi ncepts nt syste oblems nulti-ag	d tech ng and of arti ems, i s, logi ent sys	niques I practi ficial ir ncludir cal ap stems;	for sol cal skil ntelliger ng: unin proach as well	ving p ls rela nce an forme to as ph	roblems ated to the ad ration ad searco knowled ilosophic
Referen	ces	Main :																		
		1. 1. Stua 2010. 2. Dav Cambri Supporters:	rt rid dg	Russell & Pet Poole & Ala e University P	an I Yress	Norvi Mack s 201	g, Ai wort 17.	rtificia h, A	al In artific	tellig ial I	ence ntelli	: A M geno	Mode ce: F	ern Ap Found	oproa	ch. 3i s of	rd Edi Com	ition. I putatio	Pren [.] onal	tice Ha
		1. David Po	ole	& Alan Mackwor	th, A	rtificia	l Inte	ligeno	ce: Fo	ounda	tions o	of Cor	nputa	tional /	Agents	, Caml	oridge I	Univers	ity Pr	ess 2017
Support lecturer	ting	Dr. Elly Matul Ima Riskyana Dewi In	ah, Itan	M.Kom. Puspitasari, M.K	Com.															
Week-	Fin eac	al abilities of th learning		Eva	aluat	ion					H Lea Stud	lelp L trning ent A Estim	earni g metl ssign ated f	ng, hods, ments time]	·,		Learr mater	ning rials	As	sessme
	(Su	b-PO)		Indicator		Crite	ria &	Form	ı	Offli offli	ne (ne)		Onlin	e (on	line)	- [Refere	nces]		cigin (7
(1)		(2)		(3)			(4)			(5	i)			(6)			(7))		(8)
1	St to co int au ag	udents are able explain the basic incepts of ielligent and itonomous jents		 Able to explain the history and basic concept of artificial intelligence Able to explain the concepts of agent and environment Able to explain the structure and behavior of intelligent agents and their environment 	n C dd s F A P A n n	riteria Non-⊺ Assig orm (c ssess articip ctivitie	a: Fest nmen of smen aatory es	ts t:	- F a a a T F E S 3	Preser Ques nd nswe TM: 15 TT: 15 SM: 15 SM: 15 x50	ntations rs 50" 50"	Dis	cussia	on via I	LMS	Ma of a inte Co artii inte Age Str bel inte Re <i>1.</i> <i>Ru</i> <i>Pe</i> <i>Ar</i> <i>Int</i> <i>Ma</i>	terial: artificia elligenci ncept of ficial elligenci ents ar vironme ucture navior of elligent ferenc Stuar issell eter Ne tificial rellige odern oproad	History I ee, of ent, and of agents es: t & orvig, nce: A		2%

2	Students are able to apply the state- space-search thinking framework, both uninformed and informed search, to model a problem, and design and implement it to solve the problem	 Able to understand the state-space- search framework for modeling a problem Able to explain the concept of uninformed search such as: Breadth- first search, Uniform-cost search, Depth- first search, Depth-limited search, Iterative deepening depth-first search, and Bidirectional search Able to implement the concept of uninformed search to model and solve a problem. 	Form of Assessment : Participatory Activities	- Presentation - Questions and answers TM: 150" PT : 150" BM: 150" 3x50	Discussion via LMS	Material: Concept of state- space-search framework, Concept of uninformed search, Breadth- first search, Depth-limited search, Depth- first search, Depth-limited search, Iterative deepening depth- first search - Bidirectional search References : 1. Stuart Russell & Peter Norvig, Artificial Intelligence: A Modern Approach. 3rd Edition. Prentice Hall 2010. 2. David Poole & Alan Mackworth, Artificial Intelligence: Foundations of Computational Agents, Cambridge University Press 2017.	2%
3	Students are able to apply the state- space-search thinking framework, both uninformed and informed search, to model a problem, and design and implement it to solve the problem	 Able to explain informed search concepts such as: Greedy best-first search, A* search, and Memory- bounded heuristic search Able to implement the concept of informed search to model and solve a problem 	Criteria: Non-Test Assignments Form of Assessment : Participatory Activities	- Presentation - Questions and answers TM: 150" PT: 150" BM: 150" 3x50	Discussion via LMS	Material: Concept of informed search, Greedy best-first search, A* search, Memory- bounded heuristic search References: 1. Stuart Russell & Peter Norvig, Artificial Intelligence: A Modern Approach. 3rd Edition. Prentice Hall 2010. 2. David Poole & Alan Mackworth, Artificial Intelligence: Foundations of Computational Agents, Cambridge University Press 2017.	5%

4	students are able to apply local- search to overcome complexity problems in state- space-search	 Able to explain the basic concepts of local search algorithms Able to explain the types of local search algorithms such as: Hill- climbing search, Simulated annealing, Local beam search, and Genetic algorithms Able to explain the concept of local search in a continuous environment 	Form of Assessment : Participatory Activities	- Presentation - Questions and answers TM: 150" PT : 150" BM: 150" 3x50	Discussion via LMS	Material: Concept of local search, Hill- climbing search, Simulated annealing, Local beam search, Genetic algorithms, Local Search in a continuous environment, and Online Search Library: 1. Stuart Russell & Peter Norvig, Artificial Intelligence: A Modern Approach. 3rd Edition. Prentice Hall 2010. 2. David Poole & Alan Mackworth, Artificial Intelligence: Foundations of Computational Agents, Cambridge University Press 2017.	2%
5	Students are able to apply adversarial search to determine optimization strategies	 Able to define the game into a search problem Able to explain the concept of algorithms to determine optimal strategies for games such as: minimax algorithm, and alpha-beta search Able to explain techniques for overcoming problems in adversarial search Able to implement adversarial search to determine optimization strategies 	Criteria: Non-Test Assignments Form of Assessment : Participatory Activities	- Presentation - Questions and answers TM: 150" PT : 150" BM: 150" 3x50	Discussion via LMS	Material: Search problems in games, Minimax algorithm, Alpha- beta search, Cutting off search, Forward pruning Library: 1. Stuart Russell & Peter Norvig, Artificial Intelligence: A Modern Approach. 3rd Edition. Prentice Hall 2010. 2. David Poole & Alan Mackworth, Artificial Intelligence: Foundations of Computational Agents, Cambridge University Press 2017.	2%

6	Students are able to apply techniques for solving constraint satisfaction problems	 Able to define constraint satisfaction problems Able to explain the concept of inference techniques in CSP Able to explain CSP solving techniques such as: Backtracking search, minimum- remaining- values and degree heuristics, least- constraining- value heuristic, Local search using the min- conflicts heuristic, Cutset conditioning, and Tree decomposition. 	Form of Assessment : Participatory Activities	- Presentation - Questions and answers TM: 150" PT: 150" BM: 150" 3x50	Discussion via LMS	Material: Concept of constraint satisfaction problems, Inference techniques in CSP, Backtracking search, Minimum- remaining-values and degree heuristics, Least- constraining- value heuristic, Local search using the min- conflicts heuristic, Cutset conditioning, Tree decomposition Literature: 1. Stuart Russell & Peter Norvig, Artificial Intelligence: A Modern Approach. 3rd Edition. Prentice Hall 2010. 2. David Poole & Alan Mackworth, Artificial Intelligence: Foundations of Computational Agents, Cambridge University Press 2017.	2%
7	Students are able to use logic as a knowledge representation language to model aspects of the real world, as well as carry out reasoning on these representations	 Able to explain the concept of knowledge- base Able to explain the concept of representation language Able to explain the concept of Logic Able to use logic as a language of representation Able to explain the concept of propositional logic and inference formulas and proof Able to build agents using propositional logic 	Form of Assessment : Participatory Activities	- Presentation - Questions and answers TM: 150" PT : 150" BM: 150" 3x50	Discussion via LMS	Material: Knowledge-base, Representation language, Logic, Propositional logic, Inference, Building agents using propositional logic Literature: 1. Stuart Russell & Peter Norvig, Artificial Intelligence: A Modern Approach. 3rd Edition. Prentice Hall 2010. 2. David Poole & Alan Mackworth, Artificial Intelligence: Foundations of Computational Agents, Cambridge University Press 2017.	2%

8		Able to answer the questions tested	Criteria: Writing test Form of Assessment : Test	Written Exam 2x50		Material: All taught chapters References: 1. Stuart Russell & Peter Norvig, Artificial Intelligence: A Modern Approach. 3rd Edition. Prentice Hall 2010. 2. David Poole & Alan Mackworth, Artificial Intelligence: Foundations of Computational Agents, Cambridge University Press 2017.	20%
9	Students are able to use logic as a knowledge representation language to model aspects of the real world, as well as carry out reasoning on these representations	 Able to explain appropriate representation language Able to explain the concept of models from first-order logic Able to explain symbols and interpretation of first-order logic Able to build agents using a first-order logic approach Able to explain inference in first-order logic 	Form of Assessment : Practice / Performance	- Presentation - Questions and answers TM: 150" PT : 150" BM: 150" 3x50	Discussion via LMS	Material: First- order logic, Symbols and interpretation of first-order logic, Building agents using a first-order logic approach, Inference in first- order logic Literature: 1. Stuart Russell & Peter Norvig, Artificial Intelligence: A Modern Approach. 3rd Edition. Prentice Hall 2010. 2. David Poole & Alan Mackworth, Artificial Intelligence: Foundations of Computational Agents, Cambridge University Press 2017.	2%

10 Stud to a prin deci bass and reas as l data	dents are able pply the ciples of ision making ed on modeling probabilistic soning as well earning from a	 Able to explain the concept of Bayesian Networks Able to explain the concept of conditional distribution representation Able to explain the concept of inference in Bayesian networks Able to explain stochastic approximation techniques Able to implement decision making principles based on modeling 	Form of Assessment : Participatory Activities	- Presentation - Questions and answers TM: 150" PT : 150" BM: 150" 3x50	Discussion via LMS	Material: Bayesian Networks, Representation of conditional distributions, Inference in Bayesian networks, Stochastic approximation techniques, Implementation of decision making principles based on modeling. Literature: 1. Stuart Russell & Peter Norvig, Artificial Intelligence: A Modern Approach. 3rd Edition. Prentice Hall 2010. 2. David Poole & Alan Mackworth, Artificial Intelligence: Foundations of Computational Agents, Cambridge University Press 2017.	5%
11 Stuc to a prin deci bass and reas as li data	dents are able pply the ciples of ision making ed on modeling probabilistic soning as well earning from a	 Able to explain the concept of supervised learning including classification and regression problems Able to explain the concept of the Decision Tree algorithm Able to explain the concept of learning algorithm performance evaluation including the learning the learning algorithm concepts such as: linear regression, logistic regression, neural networks, support vector machines, and ensemble learning 	Form of Assessment : Participatory Activities	- Presentation - Questions and answers TM: 150" PT : 150" BM: 150" 3x50	Discussion via LMS	Material: Supervised learning, Decision Tree, Learning curve, Cross- validation, Linear regression, Logistic regression, Neural networks, Support vector machine (SVM), Ensemble learning Library: 1. Stuart Russell & Peter Norvig, Artificial Intelligence: A Modern Approach. 3rd Edition. Prentice Hall 2010. 2. David Poole & Alan Mackworth, Artificial Intelligence: Foundations of Computational Agents, Cambridge University Press 2017.	5%

12	Students are able to explain approaches to designing multi- agent systems	Students are able to explain Multi agents	Form of Assessment : Participatory Activities	- Presentation - Questions and answers TM: 150" PT : 150" BM: 150" 3x50	Discussion via LMS	Material: Multi Agents Library: 1. Stuart Russell & Peter Norvig, Artificial Intelligence: A Modern Approach. 3rd Edition. Prentice Hall 2010. 2. David Poole & Alan Mackworth, Artificial Intelligence: Foundations of Computational Agents, Cambridge University Press 2017.	5%
13	Students are able to explain approaches to designing multi- agent systems	 Students are able to explain the weaknesses and strengths of artificial intelligence Students are able to identify threats to society posed by artificial intelligence and related technologies 	Form of Assessment : Participatory Activities	- Presentation - Questions and answers TM: 150" PT : 150" BM: 150" 3x50	Discussion via LMS	Material: Weaknesses and advantages of artificial intelligence, Identifying threats of artificial intelligence to society References: 1. Stuart Russell & Peter Norvig, Artificial Intelligence: A Modern Approach. 3rd Edition. Prentice Hall 2010. 2. David Poole & Alan Mackworth, Artificial Intelligence: Foundations of Computational Agents, Cambridge University Press 2017.	2%

14	Students are able to design problem solutions using artificial intelligence techniques	 Able to formulate research questions from real world problems that will be solved using deep learning models Able to conduct literature studies related to research questions Able to design problem solving methods using deep learning models 	Form of Assessment : Project Results Assessment / Product Assessment	- Presentation - Questions and answers TM: 150" PT: 150" TM: 150" 3x50	Discussion via LMS	Material: Developing research questions, literature study, library method design: 1. Stuart Russell & Peter Norvig, Artificial Intelligence: A Modern Approach. 3rd Edition. Prentice Hall 2010. 2. David Poole & Alan Mackworth, Artificial Intelligence: Foundations of Computational Agents, Cambridge University Press 2017.	10%
15	Students are able to design problem solutions using artificial intelligence techniques	 Able to implement problem solving methods using techniques from artificial intelligence Able to carry out analysis of the results of experiments carried out Able to draw conclusions from experiments carried out and compare them with constraints from similar applications 	Form of Assessment : Project Results Assessment / Product Assessment	- Presentation - Questions and answers TM: 150" PT: 150" TM: 150" 3x50	Discussion via LMS	Material: Method Implementation, Results Analysis, Conclusion Literature: 1. Stuart Russell & Peter Norvig, Artificial Intelligence: A Modern Approach. 3rd Edition. Prentice Hall 2010. 2. David Poole & Alan Mackworth, Artificial Intelligence: Foundations of Computational Agents, Cambridge University Press 2017.	10%

16	 Able to present projects carried out Able to convey the implementation of the project being worked on Able to answer the questions given 	Criteria: Oral test Form of Assessment : Project Results Assessment / Product Assessment	- Final Project Presentation - Question and answer - 3x50 project assessment	Upload assignments via LMS	Material: Presentation, question and answer, discussion References: 1. Stuart Russell & Peter Norvig, Artificial Intelligence: A Modern Approach. 3rd Edition. Prentice Hall 2010. 2. David Poole & Alan Mackworth, Artificial Intelligence: Foundations of Computational Agents, Cambridge University Press 2017.	30%
----	--	---	---	-------------------------------	---	-----

Evaluation Percentage Recap: Project Based Learning

No	Evaluation	Percentage
1.	Participatory Activities	34%
2.	Project Results Assessment / Product Assessment	50%
3.	Practice / Performance	2%
4.	Test	20%
		100%

Notes

- 1. Learning Outcomes of Study Program Graduates (PLO Study Program) are the abilities possessed by each Study Program graduate which are the internalization of attitudes, mastery of knowledge and skills according to the level of their study program obtained through the learning process.
- 2. The PLO imposed on courses are several learning outcomes of study program graduates (CPL-Study Program) which are used for the formation/development of a course consisting of aspects of attitude, general skills, special skills and knowledge. **Program Objectives (PO)** are abilities that are specifically described from the PLO assigned to a course, and are specific to
- 3. the study material or learning materials for that course.
- Subject Sub-PO (Sub-PO) is a capability that is specifically described from the PO that can be measured or observed and is 4. the final ability that is planned at each learning stage, and is specific to the learning material of the course.
- 5. Indicators for assessing ability in the process and student learning outcomes are specific and measurable statements that identify the ability or performance of student learning outcomes accompanied by evidence.
- Assessment Criteria are benchmarks used as a measure or measure of learning achievement in assessments based on 6 predetermined indicators. Assessment criteria are guidelines for assessors so that assessments are consistent and unbiased. Criteria can be quantitative or qualitative.
- 7. Forms of assessment: test and non-test.
- 8. Forms of learning: Lecture, Response, Tutorial, Seminar or equivalent, Practicum, Studio Practice, Workshop Practice, Field Practice, Research, Community Service and/or other equivalent forms of learning.
- 9. Learning Methods: Small Group Discussion, Role-Play & Simulation, Discovery Learning, Self-Directed Learning,
- Cooperative Learning, Collaborative Learning, Contextual Learning, Project Based Learning, and other equivalent methods. 10. Learning materials are details or descriptions of study materials which can be presented in the form of several main points and sub-topics.
- 11. The assessment weight is the percentage of assessment of each sub-PO achievement whose size is proportional to the level of difficulty of achieving that sub-PO, and the total is 100%.
- 12. TM=Face to face, PT=Structured assignments, BM=Independent study.